1
|
Stracke S, Lange S, Bornmann S, Kock H, Schulze L, Klinger-König J, Böhm S, Vogelgesang A, von Podewils F, Föel A, Gross S, Wenzel K, Wallukat G, Prüss H, Dressel A, Kunze R, Grabe HJ, Langner S, Dörr M. Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor-Rationale and Design of the IMAD Pilot Study. J Clin Med 2020; 9:jcm9061919. [PMID: 32575439 PMCID: PMC7356934 DOI: 10.3390/jcm9061919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND agonistic autoantibodies (agAABs) against G protein-coupled receptors (GPCR) have been linked to cardiovascular disease. In dementia patients, GPCR-agAABs against the α1- and ß2-adrenoceptors (α1AR- and ß2AR) were found at a prevalence of 50%. Elimination of agAABs by immunoadsorption (IA) was successfully applied in cardiovascular disease. The IMAD trial (Efficacy of immunoadsorption for treatment of persons with Alzheimer dementia and agonistic autoantibodies against alpha1A-adrenoceptor) investigates whether the removal of α1AR-AABs by a 5-day IA procedure has a positive effect (improvement or non-deterioration) on changes of hemodynamic, cognitive, vascular and metabolic parameters in patients with suspected Alzheimer's clinical syndrome within a one-year follow-up period. METHODS the IMAD trial is designed as an exploratory monocentric interventional trial corresponding to a proof-of-concept phase-IIa study. If cognition capacity of eligible patients scores 19-26 in the Mini Mental State Examination (MMSE), patients are tested for the presence of agAABs by an enzyme-linked immunosorbent assay (ELISA)-based method, followed by a bioassay-based confirmation test, further screening and treatment with IA and intravenous immunoglobulin G (IgG) replacement. We aim to include 15 patients with IA/IgG and to complete follow-up data from at least 12 patients. The primary outcome parameter of the study is uncorrected mean cerebral perfusion measured in mL/min/100 gr of brain tissue determined by magnetic resonance imaging with arterial spin labeling after 12 months. CONCLUSION IMAD is an important pilot study that will analyze whether the removal of α1AR-agAABs by immunoadsorption in α1AR-agAAB-positive patients with suspected Alzheimer's clinical syndrome may slow the progression of dementia and/or may improve vascular functional parameters.
Collapse
Affiliation(s)
- Sylvia Stracke
- Department for Internal Medicine A, Nephrology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Correspondence: (S.S.); (M.D.); Tel.: +49-(0)-3834-86-80752 (S.S.); +49-(0)-3834-86-80510 (M.D.); Fax: +49-(0)-3834-86-6662 (S.S.); +49-(0)-3834-86-80502 (M.D.)
| | - Sandra Lange
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.L.); (S.L.)
| | - Sarah Bornmann
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.); (A.V.); (F.v.P.); (A.F.)
| | - Holger Kock
- Strategic Research Management, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Lara Schulze
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (L.S.); (J.K.-K.); (H.J.G.)
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (L.S.); (J.K.-K.); (H.J.G.)
| | - Susanne Böhm
- Coordinating Centre for Clinical Trials, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.); (A.V.); (F.v.P.); (A.F.)
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.); (A.V.); (F.v.P.); (A.F.)
| | - Agnes Föel
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.); (A.V.); (F.v.P.); (A.F.)
- German Center for Neurodegenerative Diseases (DZNE), 17475 Rostock/Greifswald, partner site Greifswald, Germany
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany;
- German Centre for Cardiovascular Research (DZHK), 17475 Greifswald, Germany
| | - Katrin Wenzel
- Berlin Cures GmbH, 13125 Berlin, Germany; (K.W.); (G.W.)
| | - Gerd Wallukat
- Berlin Cures GmbH, 13125 Berlin, Germany; (K.W.); (G.W.)
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany;
- Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Alexander Dressel
- Department of Neurology, Carl-Thiem-Klinikum, 03048 Cottbus, Germany;
| | - Rudolf Kunze
- Science Office, Hessenhagen 2, 17268 Flieth-Stegelitz, Germany;
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (L.S.); (J.K.-K.); (H.J.G.)
- German Center for Neurodegenerative Diseases (DZNE), 17475 Rostock/Greifswald, partner site Greifswald, Germany
| | - Sönke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.L.); (S.L.)
- Institute of Diagnostic and Interventional Radiology, University Medicine Rostock, 18057 Rostock, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany;
- German Centre for Cardiovascular Research (DZHK), 17475 Greifswald, Germany
- Correspondence: (S.S.); (M.D.); Tel.: +49-(0)-3834-86-80752 (S.S.); +49-(0)-3834-86-80510 (M.D.); Fax: +49-(0)-3834-86-6662 (S.S.); +49-(0)-3834-86-80502 (M.D.)
| |
Collapse
|
3
|
Moriguchi T, Koizumi K, Matsuda K, Harii N, Goto J, Harada D, Sugawara H, Hoshiai M, Kise H, Baba A. Plasma exchange for the patients with dilated cardiomyopathy in children is safe and effective in improving both cardiac function and daily activities. J Artif Organs 2017; 20:236-243. [DOI: 10.1007/s10047-017-0956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
|
4
|
Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, Dunbar NM, Witt V, Wu Y, Shaz BH. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J Clin Apher 2017; 31:149-62. [PMID: 27322218 DOI: 10.1002/jca.21470] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The American Society for Apheresis (ASFA) Journal of Clinical Apheresis (JCA) Special Issue Writing Committee is charged with reviewing, updating, and categorizing indications for the evidence-based use of therapeutic apheresis in human disease. Since the 2007 JCA Special Issue (Fourth Edition), the Committee has incorporated systematic review and evidence-based approaches in the grading and categorization of apheresis indications. This Seventh Edition of the JCA Special Issue continues to maintain this methodology and rigor to make recommendations on the use of apheresis in a wide variety of diseases/conditions. The JCA Seventh Edition, like its predecessor, has consistently applied the category and grading system definitions in the fact sheets. The general layout and concept of a fact sheet that was used since the fourth edition has largely been maintained in this edition. Each fact sheet succinctly summarizes the evidence for the use of therapeutic apheresis in a specific disease entity. The Seventh Edition discusses 87 fact sheets (14 new fact sheets since the Sixth Edition) for therapeutic apheresis diseases and medical conditions, with 179 indications, which are separately graded and categorized within the listed fact sheets. Several diseases that are Category IV which have been described in detail in previous editions and do not have significant new evidence since the last publication are summarized in a separate table. The Seventh Edition of the JCA Special Issue serves as a key resource that guides the utilization of therapeutic apheresis in the treatment of human disease. J. Clin. Apheresis 31:149-162, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Anand Padmanabhan
- Blood Center of Wisconsin, Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole Aqui
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rasheed A Balogun
- Division of Nephrology, University of Virginia, Charlottesville, Virginia
| | - Laura Connelly-Smith
- Department of Medicine, Seattle Cancer Care Alliance and University of Washington, Seattle, Washington
| | - Meghan Delaney
- Bloodworks Northwest, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Volker Witt
- Department for Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
| | - Yanyun Wu
- Bloodworks Northwest, Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Beth H Shaz
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.,New York Blood Center, Department of Pathology.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Koizumi K, Hoshiai M, Toda T, Katsumata N, Kise H, Hasebe Y, Kouno Y, Kaga S, Suzuki S, Sugita K. Outcomes of plasma exchange for severe dilated cardiomyopathy in children. Heart Vessels 2016; 32:61-67. [DOI: 10.1007/s00380-016-0830-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/25/2016] [Indexed: 12/29/2022]
|
7
|
Winters JL, Cooper LT, Ratcliffe NR, Wu Y, Moriarty PM. National heart, lung, and blood institute state of the science symposium in therapeutic apheresis-Therapeutic apheresis in cardiovascular disease. J Clin Apher 2014; 30:183-7. [DOI: 10.1002/jca.21355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 08/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
| | - Leslie T. Cooper
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester Minnesota
| | - Nora R. Ratcliffe
- Department of Pathology; Veterans Affairs Medical Center; White River Junction Vermont
| | - Yanyun Wu
- Medical Division, Puget Sound Blood Center; Seattle, Washington; Department of Laboratory Medicine, Yale University; New Haven Connecticut
- Department of Laboratory Medicine; Yale University School of Medicine; New Haven Connecticut
| | - Patrick M. Moriarty
- Division of Clinical Pharmacology; University of Kansas Hospital; Kansas City Kansas
| |
Collapse
|
8
|
Sanchez AP, Cunard R, Ward DM. The selective therapeutic apheresis procedures. J Clin Apher 2013; 28:20-9. [PMID: 23420592 DOI: 10.1002/jca.21265] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022]
Abstract
Selective apheresis procedures have been developed to target specific molecules, antibodies, or cellular elements in a variety of diseases. The advantage of the selective apheresis procedures over conventional therapeutic plasmapheresis is preservation of other essential plasma components such as albumin, immunoglobulins, and clotting factors. These procedures are more commonly employed in Europe and Japan, and few are available in the USA. Apheresis procedures discussed in this review include the various technologies available for low-density lipoprotein (LDL) apheresis, double filtration plasmapheresis (DFPP), cryofiltration, immunoadsorption procedures, adsorption resins that process plasma, extracorporeal photopheresis, and leukocyte apheresis.
Collapse
Affiliation(s)
- Amber P Sanchez
- Therapeutic Apheresis Program, Department of Medicine, Division of Nephrology and Hypertension, University of California San Diego Medical Center, San Diego, CA, USA.
| | | | | |
Collapse
|