1
|
Flegg D, Lima LV, Woznowski-Vu A, Aternali A, Gervais A, Stone L, Wideman TH. Are biomarkers associated with sensitivity to physical activity? Eur J Pain 2024; 28:120-132. [PMID: 37593830 DOI: 10.1002/ejp.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 04/12/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Activity-based treatments play an integral role in managing musculoskeletal conditions including low back pain. However, while therapeutic exercise has been shown to reduce pain in such conditions, certain individuals experience a paradoxical pain increase in response to exercise. The physiological processes underlying this sensitivity to physical activity (SPA) are not fully understood, however stress and inflammation have been shown to contribute to SPA. The present cross-sectional study investigated whether physiological indicators of stress (cortisol) and inflammation (IL-6) help explain SPA. METHODS Twenty-seven patients with chronic low back pain and 21 healthy controls completed a 1-h exercise session of standardized physical tasks. SPA was calculated from the difference between post- and pre-exercise pain levels. Participant's saliva was collected at several timepoints for cortisol and IL-6 levels quantification. Their waking cortisol response was calculated to reflect their cortisol regulation. Reactivity of IL-6 and cortisol was calculated to reflect changes in these measures during exercise. RESULTS IL-6 reactivity was significantly and positively correlated with SPA among participants with low back pain. In contrast, neither cortisol waking response nor cortisol reactivity was significantly correlated within the low back pain group. No significant differences in IL-6 reactivity, cortisol reactivity or cortisol waking response were observed. CONCLUSION These findings are the first to link SPA to an objective biomarker among people with low back pain. These findings help describe the physiological mechanisms of SPA and can support new clinical research that targets the inflammatory response of patients with chronic low-back pain and elevated SPA. SIGNIFICANCE This study reveals a correlation between SPA and an objective salivary biomarker of IL-6 in people with low back pain, improving our understanding of this clinically relevant subjective experience.
Collapse
Affiliation(s)
- D Flegg
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Internal Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - L V Lima
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - A Woznowski-Vu
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - A Aternali
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - A Gervais
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - L Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesiology, Faculty of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - T H Wideman
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Li G, Cheng T, Yu X. The Impact of Trace Elements on Osteoarthritis. Front Med (Lausanne) 2022; 8:771297. [PMID: 35004740 PMCID: PMC8732765 DOI: 10.3389/fmed.2021.771297] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act.
Collapse
Affiliation(s)
- Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Kivela P. Paradigm Shift for COVID-19 Response: Identifying High-risk Individuals and Treating Inflammation. West J Emerg Med 2020; 21:473-476. [PMID: 32302283 PMCID: PMC7234699 DOI: 10.5811/westjem.2020.3.47520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Paul Kivela
- The University of Alabama at Birmingham, Department of Emergency Medicine, Birmingham, Alabama
| |
Collapse
|
4
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
5
|
Yu J, Xu L, Li K, Xie N, Xi Y, Wang Y, Zheng X, Chen X, Wang M, Ye X. Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-β/Smad Pathway and Osseointegration in Osteopenic Rabbits. Sci Rep 2017; 7:3440. [PMID: 28611362 PMCID: PMC5469779 DOI: 10.1038/s41598-017-03661-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Surface-modified metal implants incorporating different ions have been employed in the biomedical field as bioactive dental implants with good osseointegration properties. However, the molecular mechanism through which surface coatings exert the biological activity is not fully understood, and the effects have been difficult to achieve, especially in the osteopenic bone. In this study, We examined the effect of zinc-modified calcium silicate coatings with two different Zn contents to induce osteogenic differentiation of rat bone marrow-derived pericytes (BM-PCs) and osteogenetic efficiency in ovariectomised rabbits. Ti-6Al-4V with zinc-modified calcium silicate coatings not only enhanced proliferation but also promoted osteogenic differentiation and mineralized matrix deposition of rat BM-PCs as the zinc content and culture time increased in vitro. The associated molecular mechanisms were investigated by Q-PCR and Western blotting, revealing that TGF-β/Smad signaling pathway plays a direct and significant role in regulating BM-PCs osteoblastic differentiation on Zn-modified coatings. Furthermore, in vivo results that revealed Zn-modified calcium silicate coatings significantly promoted new bone formation around the implant surface in osteopenic rabbits as the Zn content and exposure time increased. Therefore, Zn-modified calcium silicate coatings can improve implant osseointegration in the condition of osteopenia, which may be beneficial for patients suffering from osteoporosis-related fractures.
Collapse
Affiliation(s)
- Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China.
| | - Lizhang Xu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Xie
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yang Wang
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiongsheng Chen
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Meiyan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
6
|
A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:226-32. [PMID: 26952418 DOI: 10.1016/j.msec.2016.01.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/05/2015] [Accepted: 01/15/2016] [Indexed: 01/19/2023]
Abstract
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.
Collapse
|
7
|
Zhao SF, Dong WJ, Jiang QH, He FM, Wang XX, Yang GL. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces. J Zhejiang Univ Sci B 2014; 14:518-25. [PMID: 23733429 DOI: 10.1631/jzus.b1200327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. METHODS A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. RESULTS Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). CONCLUSIONS The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface.
Collapse
Affiliation(s)
- Shi-fang Zhao
- Department of Oral Implantology, Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
8
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
9
|
Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:313-8. [DOI: 10.1016/j.tripleo.2011.02.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/22/2011] [Indexed: 11/20/2022]
|
10
|
Zinc protects against indomethacin-induced damage in the rat small intestine. Eur J Pharmacol 2011; 654:106-16. [DOI: 10.1016/j.ejphar.2010.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 12/08/2010] [Accepted: 12/11/2010] [Indexed: 12/29/2022]
|
11
|
Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46:732-41. [PMID: 19913120 DOI: 10.1016/j.bone.2009.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/18/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
A characteristic sign of zinc deficiency is retarded skeletal growth, but the role of zinc in osteoblasts is not well understood. Two major events for bone formation include osteoblast differentiation by bone marker gene expression, which is mainly regulated by bone-specific transcription factor Runx2 and extracellular matrix (ECM) mineralization by Ca deposits for bone nodule formation. We investigated whether zinc deficiency down-regulates bone marker gene transcription and whether this might occur through modulation of Runx2. We also investigated whether zinc deficiency decreases ECM mineralization in osteoblastic MC3T3-E1 cells. In the presence of 5 mumol/L TPEN as zinc chelator, zinc deficiency (ZnD: 1 micromol Zn/L) decreased bone marker gene (collagen type I, osteopontin, alkaline phosphatase, osteoclacin and parathyroid hormone receptor) expression, as compared to normal osteogenic medium (OSM) or zinc adequate medium (ZnA: 15 micromol/L) (P<0.05) both at 5 days (proliferation) and 15 days (matrix maturation). Decreased bone marker gene transcription by zinc deficiency could be caused by decreased nuclear Runx2 protein (P=0.05) and transcript (P<0.05) levels in ZnD. Furthermore, within the first 24 h of differentiation when Runx2 expression is induced, maximal Runx2 mRNA and nuclear protein levels were delayed in ZnD compared to OSM and ZnA. ECM Ca deposition was also lower in ZnD, which was also indirectly confirmed by detection of decreased cellular (synthesized) and medium (secreted) ALP activity as well as matrix ALP activity. Taken together, zinc deficiency attenuated osteogenic activity by decreasing bone marker gene transcription through reduced and delayed Runx2 expression and by decreasing ECM mineralization through inhibition of ALP activity in osteoblasts. Decreased and delayed bone marker gene, Runx2 expression and ECM mineralization in osteoblasts by zinc deficiency can be a potential explanation for the retarded skeletal growth which is the major zinc deficiency syndrome.
Collapse
Affiliation(s)
- In-Sook Kwun
- Department of Food Science and Nutrition, Andong National University, 388 Songchundong, Andong, Kyungpook 760-749, South Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lin W, Mohandas B, Fontaine CP, Colvin RA. Release of intracellular Zn2+ in cultured neurons after brief exposure to low concentrations of exogenous nitric oxide. Biometals 2007; 20:891-901. [PMID: 17279325 DOI: 10.1007/s10534-007-9082-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/15/2007] [Indexed: 01/22/2023]
Abstract
Several studies have shown intracellular Zn(2+) release and concomitant cell death after prolonged exposure to exogenous NO. In the present study, we investigated whether cortical neurons briefly exposured to exogenous NO would demonstrate similar levels of intracellular Zn(2+) release and subsequent cell death. Cortical neurons were loaded with the Zn(2+) selective fluorophore FluoZin-3 and treated with various concentrations of the NO generator, spermine NONOate. Fluorescence microscopy was used to detect and quantify intracellular Zn(2+) levels. Concomitant EDTA perfusion was used to eliminate potential effects of extracellular Zn(2+). Neurons were perfused with the heavy metal chelator TPEN to selectively eliminate Zn(2+) induced fluorescence changes. A significant increase of intracellular fluorescence was detected during a 5 min perfusion with spermine NONOate. The increase in intracellular Zn(2+) release appeared to peak at 1 microM spermine NONOate (123.8 +/- 28.5%, increase above control n = 20, P < 0.001). Further increases in spermine NONOate levels as high as 1 mM failed to further increase detectable intracellular Zn(2+) levels. The NO scavenger hemoglobin blocked the effects of spermine NONOate and the inactive analog of the spermine NONOate, spermine, was without effect. No evidence of cell death induced by any of the brief treatments with exogenous NO was observed; only prolonged incubation with much larger amounts of exogenous NO resulted in significant cell death. These data suggest that in vivo release of NO may cause elevations of intracellular Zn(2+) in cortical neurons. The possibility that release of intracellular Zn(2+) in response to NO could play a role in intracellular signaling is discussed.
Collapse
Affiliation(s)
- Wei Lin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
13
|
Hanai Y, Tokuda H, Yasuda E, Noda T, Ohta T, Takai S, Kozawa O. Up-regulation by zinc of FGF-2-induced VEGF release through enhancing p44/p42 MAP kinase activation in osteoblasts. Life Sci 2006; 80:230-4. [PMID: 17020773 DOI: 10.1016/j.lfs.2006.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 01/07/2023]
Abstract
We previously reported that basic fibroblast growth factor (FGF-2) activates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether zinc affects the VEGF release by FGF-2 in MC3T3-E1 cells. The FGF-2-induced VEGF release was significantly enhanced by ZnSO(4) but not Na(2)SO(4). The enhancing effect of ZnSO(4) was dose-dependent between 1 and 100 muM. ZnSO(4) markedly enhanced the FGF-2-induced phosphorylation of p44/p42 MAP kinase while having little effect on the SAPK/JNK phosphorylation. PD98059 significantly reduced the amplification by ZnSO(4) of the FGF-2-stimulated VEGF release. Taken together, our findings strongly suggest that zinc enhances FGF-2-stimulated VEGF release resulting from up-regulating activation of p44/p42 MAP kinase in osteoblasts.
Collapse
Affiliation(s)
- Yoshiteru Hanai
- Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Minelli A, Bellezza I, Grottelli S, Pinnen F, Brunetti L, Vacca M. Phosphoproteomic analysis of the effect of cyclo-[His-Pro] dipeptide on PC12 cells. Peptides 2006; 27:105-13. [PMID: 16137790 DOI: 10.1016/j.peptides.2005.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 12/23/2022]
Abstract
The effects of dipeptide cyclo-[His-Pro] (CHP), known to participate in the appetite behavior and food intake control, have been investigated using PC12 cells in culture as model system. We found that only in the presence of experimental conditions that cause cellular stress the cyclic dipeptide affect cellular proliferation and protects from apoptosis. It greatly enhances the phosphorylation of hsp27, alpha-B-crystallin, Cdc2, and p-38 MAPK, whereas it decreases the phosphorylation of MEK1, Cav 2, GSK3a, PKB/Akt, PKCdelta, PKCgamma, and Erk2. PKA and PKG are involved in ERK1/2 deactivation via a receptor that appears to be dually coupled to Gs and Gq protein subfamilies.
Collapse
Affiliation(s)
- Alba Minelli
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, via del Giochetto, 06123 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Wieringa FT, Dijkhuizen MA, West CE, van der Ven-Jongekrijg J, van der Meer JWM. Reduced production of immunoregulatory cytokines in vitamin A- and zinc-deficient Indonesian infants. Eur J Clin Nutr 2005; 58:1498-504. [PMID: 15162133 DOI: 10.1038/sj.ejcn.1601998] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine effects of vitamin A, zinc and iron deficiency in Indonesian infants on the ability to produce immunoregulatory cytokines. DESIGN, SETTING AND SUBJECTS Immunological assessment was done in 59 infants participating in a cross-sectional nutritional survey in rural West Java, Indonesia. Production of T-helper cell type-1 (Th1, cell-mediated) cytokines interferon-gamma (IFN-gamma), interleukin-12 (IL-12), interleukin-18 (IL-18) and T-helper cell type-2 (Th2, humoral) cytokine interleukin-6 (IL-6) were measured after stimulation with lipopolysaccharide and phytohemagglutinin in an ex vivo whole blood culture system. Circulating neopterin concentrations were determined as an indicator of in vivo macrophage activity. RESULTS Of the infants, 48% were vitamin A deficient, 44% were anemic (with 17% having iron deficiency anemia), and 17% were zinc deficient. Vitamin-A deficient infants had significantly reduced ex vivo production of IFN-gamma, but also significantly higher circulating neopterin concentrations. Production of IFN-gamma and IL-12 were strongly correlated, IFN-gamma and IL-18 production were not. Zinc deficiency was accompanied by significantly reduced white blood cell counts and reduced ex vivo production of IL-6. Iron status was not related to cytokine production. CONCLUSIONS This study shows that in vitamin A deficiency there is Th1 dominance in a steady state, combined however with impairment of the Th1 response after stimulation, whereas in zinc deficiency, there is a decreased Th2 response. Overall, vitamin A deficiency and zinc deficiency have marked albeit different effects on the immunocompetence of infants, affecting both cell-mediated and humoral components of the immune system.
Collapse
Affiliation(s)
- F T Wieringa
- Department of Internal Medicine, University Hospital Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Tabakman R, Jiang H, Levine RA, Kohen R, Lazarovici P. Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J Neurosci Res 2004; 75:499-507. [PMID: 14743433 DOI: 10.1002/jnr.20008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently improved an in vitro ischemic model, using PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 3 hr in a special device, followed by 18 hr of reoxygenation. The cell death induced in this ischemic model was evaluated by a series of markers: lactate dehydrogenase (LDH) release, caspase-3 activation, presence of cyclin D1, cytochrome c leakage from the mitochondria, BAX cellular redistribution, cleavage of poly (ADP-ribose) polymerase (PARP) to an 85-kDa apoptotic fragment, and DNA fragmentation. The OGD insult, in the absence of reoxygenation, caused a strong activation of the mitogen-activated protein kinase (MAPK) isoforms extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and stress-activated protein kinase (SAPK), also known as p-38. The detection of apoptotic markers and activation of MAPKs during the ischemic insult strongly suggest that apoptosis plays an important role in the PC12 cell death. Homocarnosine, a neuroprotective histidine dipeptide, present in high concentrations in the brain, was found to provide neuroprotection, as expressed by a 40% reduction in LDH release and caspase-3 activity at 1 mM. Homocarnosine reduced OGD activation of ERK 1, ERK 2, JNK 1, and JNK 2 by 40%, 46%, 55%, and 30%, respectively. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that antioxidants, such as homocarnosine, may prevent OGD-induced neuronal death by inhibiting the apoptotic process and/or in relation to the differential attenuation of activity of MAPKs.
Collapse
Affiliation(s)
- Rinat Tabakman
- Department of Pharmacology and Experimental Therapeutics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
17
|
Vesce F, Pavan B, Lunghi L, Giovannini G, Scapoli C, Piffanelli A, Biondi C. Inhibition of Amniotic Interleukin-6 and Prostaglandin E2 Release by Ampicillin. Obstet Gynecol 2004; 103:108-13. [PMID: 14704253 DOI: 10.1097/01.aog.0000101282.38902.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the effect of ampicillin on amniotic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) release. METHODS In an in vitro study, IL-6 and PGE2 release from amnion-like Wistar Institute Susan Hayflick cells was assayed under basal conditions, as well as after incubation with ampicillin. In an in vivo study, amniotic fluid IL-6 was assayed in a total of 212 patients submitted to genetic amniocentesis during the 17th week of their singleton physiological pregnancy. The study population was subdivided as follows: 92 patients sampled before ampicillin administration, 70 patients sampled 4 hours after administration of 1 g ampicillin, and 50 patients sampled 12 hours after administration of 1 g ampicillin. RESULTS At doses ranging from 10-7 to 10-4 M, ampicillin decreased IL-6 release from Wistar Institute Susan Hayflick cells. The drug effect was already statistically significant (-30%; P <.05) at the lowest concentration tested (10-7 M), reaching the maximum (-50%) at 10-6 M after 4 hours of incubation. Moreover, ampicillin concentrations ranging from 10-7 to 10-4 M decreased PGE2 release from Wistar Institute Susan Hayflick cells; maximal inhibition was reached at 10-6 M after 4 hours (-40%; P <.05). Finally, IL-6 levels measured in amniotic fluid of patients sampled 4 hours after ampicillin administration proved strongly and significantly reduced when compared with those sampled either before or 12 hours after treatment (P <.001). CONCLUSION The capacity of ampicillin to directly decrease amniotic IL-6 and PGE2 release should be considered in the management of bacterial and nonbacterial inflammatory complications of pregnancy mediated by the cytokine and prostanoid interaction.
Collapse
Affiliation(s)
- Fortunato Vesce
- Department of Biochemical Sciences and Advanced Therapy, Section of Obstetrics and Gynaecology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tokuda H, Harada A, Hirade K, Matsuno H, Ito H, Kato K, Oiso Y, Kozawa O. Incadronate amplifies prostaglandin F2 alpha-induced vascular endothelial growth factor synthesis in osteoblasts. Enhancement of MAPK activity. J Biol Chem 2003; 278:18930-7. [PMID: 12646577 DOI: 10.1074/jbc.m209159200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that prostaglandin F2 alpha (PGF2 alpha) activates p44/p42 mitogen-activated protein kinase (MAPK) through protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of vascular endothelial growth factor (VEGF) synthesis induced by PGF2 alpha and the effect of incadronate on the VEGF synthesis in these cells. PGF2 alpha significantly stimulated the VEGF synthesis in a dose-dependent manner between 1 pm and 10 microm. Cycloheximide reduced the PGF2 alpha effect. PGF2 alpha increased the levels of mRNA for VEGF. Cloprostenol, a PGF2 alpha-sensitive receptor agonist, potently induced the VEGF synthesis. Indomethacin, an inhibitor of cyclooxygenase, significantly reduced the PGF2 alpha-induced VEGF synthesis. Bisindolylmaleimide, an inhibitor of PKC, reduced the PGF2 alpha-induced VEGF synthesis. The VEGF synthesis induced by PGF2 alpha was significantly attenuated in the PKC down-regulated cells. PGF2 alpha elicited the translocation of PKC beta I from cytosol to membrane fraction. PD98059 or U0126, inhibitors of MEK, suppressed the VEGF synthesis induced by PGF2 alpha. Farnesyltransferase inhibitor failed to affect the PGF2 alpha-induced VEGF synthesis. Incadronate enhanced the synthesis of VEGF induced by PGF2 alpha. NaF-induced VEGF synthesis was also amplified by incadronate. PD98059 suppressed the enhancement by incadronate of PGF2 alpha-induced VEGF synthesis. Incadronate markedly enhanced the phosphorylation of Raf-1, MEK1/2, and p44/p42 MAPK induced by PGF2 alpha or 12-O-tetradecanoylphorbol-13-acetate, a PKC activator. Incadronate significantly enhanced the cloprostenol-increased level of VEGF concentration in mouse plasma in vivo. These results strongly suggest that PGF2 alpha stimulates VEGF synthesis through the PKC-dependent activation of p44/p42 MAPK in osteoblasts and that the incadronate enhances the VEGF synthesis at the point between PKC and Raf-1.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Obu, Aichi 474-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|