1
|
Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin Signaling Contributes to High Glucose-Induced Injury of Human Brain Microvascular Endothelial Cells. J Alzheimers Dis 2021; 79:211-224. [PMID: 33252072 DOI: 10.3233/jad-200658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.
Collapse
Affiliation(s)
- Haripriya Vittal Rao
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Jaclyn Iannucci
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
2
|
Mikdar M, González-Menéndez P, Cai X, Zhang Y, Serra M, Dembele AK, Boschat AC, Sanquer S, Chhuon C, Guerrera IC, Sitbon M, Hermine O, Colin Y, Le Van Kim C, Kinet S, Mohandas N, Xia Y, Peyrard T, Taylor N, Azouzi S. The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood 2021; 137:3548-3562. [PMID: 33690842 PMCID: PMC8225918 DOI: 10.1182/blood.2020007281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.
Collapse
Affiliation(s)
- Mahmoud Mikdar
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Pedro González-Menéndez
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Marion Serra
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Abdoul K Dembele
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | | | - Sylvia Sanquer
- INSERM UMR S1124, Université de Paris, Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Olivier Hermine
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Université de Paris, UMR 8147, CNRS, Paris, France
| | - Yves Colin
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Caroline Le Van Kim
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Sandrina Kinet
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Thierry Peyrard
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Naomi Taylor
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Slim Azouzi
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| |
Collapse
|
3
|
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2018; 234:2373-2385. [PMID: 30192008 DOI: 10.1002/jcp.27262] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Erythropoiesis is a multi-step process that involves the differentiation of hematopoietic stem cells into mature red blood cells (RBCs). This process is regulated by several signaling pathways, transcription factors and microRNAs (miRNAs). Many studies have shown that dysregulation of this process can lead to hematologic disorders. PI3K/AKT is one of the most important pathways that control many cellular processes including, cell division, autophagy, survival, and differentiation. In this review, we focus on the role of PI3K/AKT pathway in erythropoiesis and discuss the function of some of the most important genes, transcription factors, and miRNAs that regulate different stages of erythropoiesis which play roles in differentiation and maturation of RBCs, prevention of apoptosis, and autophagy induction. Understanding the role of the PI3K pathway in erythropoiesis may provide new insights into diagnosing erythrocyte disorders.
Collapse
Affiliation(s)
- Mahjoobeh Jafari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Dadkhah
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Targeting CREB-binding protein overrides LPS induced radioresistance in non-small cell lung cancer cell lines. Oncotarget 2018; 9:28976-28988. [PMID: 29989005 PMCID: PMC6034744 DOI: 10.18632/oncotarget.25665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a very poor prognosis even when treated with the best therapies available today often including radiation. NSCLC is frequently complicated by pulmonary infections which appear to impair prognosis as well as therapy, whereby the underlying mechanisms are still not known. It was investigated here, whether the bacterial lipopolysaccharides (LPS) might alter the tumor cell radiosensitivity. LPS were found to induce a radioresistance but solely in cells with an active TLR-4 pathway. Proteome profiling array revealed that LPS combined with irradiation resulted in a strong phosphorylation of cAMP response element-binding protein (CREB). Inhibition of CREB binding protein (CBP) by the specific inhibitor ICG-001 not only abrogated the LPS-induced radioresistance but even led to an increase in radiosensitivity. The sensitization caused by ICG-001 could be attributed to a reduction of DNA double-strand break (DSB) repair. It is shown that in NSCLC cells LPS leads to a CREB dependent radioresistance which is, however, reversible through CBP inhibition by the specific inhibitor ICG-001. These findings indicate that the combined treatment with radiation and CBP inhibition may improve survival of NSCLC patients suffering from pulmonary infections.
Collapse
|
5
|
Zhang ZX, Zhang WN, Sun YY, Li YH, Xu ZM, Fu WN. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis. Onco Targets Ther 2018; 11:1323-1331. [PMID: 29563811 PMCID: PMC5848665 DOI: 10.2147/ott.s156582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose CREB, MYCY1 and NAT10 are involved in cancer cell migration. However, the relationship between these three proteins and their role in laryngeal cancer cell migration remains unknown. Methods Transient gene transfection was performed in laryngeal cancer cells. Bioinformatics analysis was used to predict the binding of CREB to MYCT1 promoter. Binding of CREB to the promoter of MYCT1 was monitored by luciferase reporter assay and chromatin immuno-precipitation method in vitro and in vivo, respectively. Real-time RT-PCR and Western bolt were applied to detect gene transcription and translation levels, respectively. Laryngeal cancer cell migration was assayed by transwell chamber experiment. Results CREB protein expression was significantly up-regulated in laryngeal cancer tissues and associated with cancer differentiation, tumor stage, and lymphatic metastasis. CREB inhibits MYCT1 expression by direct binding to its promoter. Meanwhile, MYCT1 has a negative impact on the NAT10 gene expression. Furthermore, CREB promotes NAT10 expression via down-regulating the MYCT1 gene expression. In addition, contrary to MYCT1, CREB and NAT10 enhanced laryngeal cancer cell migration. MYCT1 and NAT10 significantly rescued the effects of CREB and MYCT1 on Hep2 cell migration, respectively. Conclusion CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis, suggesting that CREB might be a potential prognostic marker in laryngeal cancer.
Collapse
Affiliation(s)
- Zhao-Xiong Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wan-Ni Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yun-Hui Li
- Department of Laboratory Medicine, No 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, No 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Centurione L, Passaretta F, Centurione MA, De Munari S, Vertua E, Silini A, Liberati M, Parolini O, Di Pietro R. Mapping of the Human Placenta: Experimental Evidence of Amniotic Epithelial Cell Heterogeneity. Cell Transplant 2018; 27:12-22. [PMID: 29562779 PMCID: PMC6434477 DOI: 10.1177/0963689717725078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023] Open
Abstract
The human placenta is an important source of stem cells that can be easily collected without ethical concerns since it is usually discarded after childbirth. In this study, we analyzed the amniotic membrane (AM) from the human placenta with the aim of mapping different regions with respect to their morpho-functional features and regenerative potential. AMs were obtained from 24 healthy women, undergoing a caesarean section, and mapped into 4 different regions according to their position in relation to the umbilical cord: the central, intermediate, peripheral, and reflected areas. We carried out a multiparametric analysis focusing our attention on amniotic epithelial cells (AECs). Our results revealed that AECs, isolated from the different areas, are a heterogeneous cell population with different pluripotency and proliferation marker expression (octamer-binding transcription factor 4 [OCT-4], tyrosine-protein kinase KIT [c-KIT], sex determining region Y-box 2 [SOX-2], α-fetoprotein, cyclic AMP response element binding [CREB] protein, and phosphorylated active form of CREB [p-CREB]), proliferative ability, and osteogenic potential. Our investigation discloses interesting findings that could be useful for increasing the efficiency of AM isolation and application for therapeutic purposes.
Collapse
Affiliation(s)
- Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| | - Maria Antonietta Centurione
- StemTeCh Group, Chieti, Italy
- Institute of Molecular Genetics, National Research Council-Pavia, Section of Chieti, Italy
| | - Silvia De Munari
- E. Menni Research Center, Fondazione Poliambulanza, Brescia, Italy
| | - Elsa Vertua
- E. Menni Research Center, Fondazione Poliambulanza, Brescia, Italy
| | | | - Marco Liberati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Ornella Parolini
- E. Menni Research Center, Fondazione Poliambulanza, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- StemTeCh Group, Chieti, Italy
| |
Collapse
|
7
|
D’Auria F, Centurione L, Centurione MA, Angelini A, Di Pietro R. Regulation of Cancer Cell Responsiveness to Ionizing Radiation Treatment by Cyclic AMP Response Element Binding Nuclear Transcription Factor. Front Oncol 2017; 7:76. [PMID: 28529924 PMCID: PMC5418225 DOI: 10.3389/fonc.2017.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Cyclic AMP response element binding (CREB) protein is a member of the CREB/activating transcription factor (ATF) family of transcription factors that play an important role in the cell response to different environmental stimuli leading to proliferation, differentiation, apoptosis, and survival. A number of studies highlight the involvement of CREB in the resistance to ionizing radiation (IR) therapy, demonstrating a relationship between IR-induced CREB family members' activation and cell survival. Consistent with these observations, we have recently demonstrated that CREB and ATF-1 are expressed in leukemia cell lines and that low-dose radiation treatment can trigger CREB activation, leading to survival of erythro-leukemia cells (K562). On the other hand, a number of evidences highlight a proapoptotic role of CREB following IR treatment of cancer cells. Since the development of multiple mechanisms of resistance is one key problem of most malignancies, including those of hematological origin, it is highly desirable to identify biological markers of responsiveness/unresponsiveness useful to follow-up the individual response and to adjust anticancer treatments. Taking into account all these considerations, this mini-review will be focused on the involvement of CREB/ATF family members in response to IR therapy, to deepen our knowledge of this topic, and to pave the way to translation into a therapeutic context.
Collapse
Affiliation(s)
- Francesca D’Auria
- Department of Cardiac and Vascular Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| | | | - Antonio Angelini
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
- Ageing Research Center, CeSI, G. d’Annunzio University Foundation, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
8
|
Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation. PLoS One 2016; 11:e0148633. [PMID: 26849432 PMCID: PMC4743930 DOI: 10.1371/journal.pone.0148633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes.
Collapse
|
9
|
DI NISIO CHIARA, SANCILIO SILVIA, DI GIACOMO VIVIANA, RAPINO MONICA, SANCILLO LAURA, GENOVESI DOMENICO, DI SIENA ALESSANDRO, RANA ROSAALBA, CATALDI AMELIA, DI PIETRO ROBERTA. Involvement of cyclic-nucleotide response element-binding family members in the radiation response of Ramos B lymphoma cells. Int J Oncol 2016; 48:28-36. [PMID: 26573110 PMCID: PMC4734613 DOI: 10.3892/ijo.2015.3238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate the role of Cyclic-nucleotide Response Element-Binding (CREB) family members and related nuclear transcription factors in the radiation response of human B lymphoma cell lines (Daudi and Ramos). Unlike the more radiosensitive Daudi cells, Ramos cells demonstrated only a moderate increase in early apoptosis after 3-5 Gy irradiation doses, which was detected with Annexin V/PI staining. Moreover, a significant and dose-dependent G2/M phase accumulation was observed in the same cell line at 24 h after both ionizing radiation (IR) doses. Western blot analysis showed an early increase in CREB protein expression that was still present at 3 h and more evident after 3 Gy IR in Ramos cells, along with the dose-dependent upregulation of p53 and NF-κB. These findings were consistent with real-time RT-PCR analysis that showed an early- and dose-dependent upregulation of NFKB1, IKBKB and XIAP gene expression. Unexpectedly, pre-treatment with SN50 did not increase cell death, but cell viability. Taken together, these findings let us hypothesise that the early induction and activation of NF-κB1 in Ramos cells could mediate necrotic cell death and be linked to other molecules belonging to CREB family and involved in the cell cycle regulation.
Collapse
Affiliation(s)
- CHIARA DI NISIO
- Department of Pharmacy, G. d'Annunzio University, I-66100 Chieti, Italy
| | - SILVIA SANCILIO
- Department of Pharmacy, G. d'Annunzio University, I-66100 Chieti, Italy
| | | | - MONICA RAPINO
- Molecular Genetics Institute CNR, I-27100 Pavia, Italy
| | - LAURA SANCILLO
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, I-66100 Chieti, Italy
| | - DOMENICO GENOVESI
- Institute of Oncologic Radiotherapy, G. d'Annunzio University, I-66100 Chieti, Italy
| | | | - ROSA ALBA RANA
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, I-66100 Chieti, Italy
| | - AMELIA CATALDI
- Department of Pharmacy, G. d'Annunzio University, I-66100 Chieti, Italy
| | - ROBERTA DI PIETRO
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, I-66100 Chieti, Italy
| |
Collapse
|
10
|
Fernández-Araujo A, Alfonso A, Vieytes MR, Botana LM. Key role of phosphodiesterase 4A (PDE4A) in autophagy triggered by yessotoxin. Toxicology 2015; 329:60-72. [PMID: 25576684 DOI: 10.1016/j.tox.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
Abstract
Understanding the mechanism of action of the yessotoxin (YTX) is crucial since this drug has potential pharmacological effects in allergic processes, tumor proliferation and neurodegenerative diseases. It has been described that YTX activates apoptosis after 24h of treatment, while after 48 h of incubation with the toxin a decrease in cell viability corresponding to cellular differentiation or non-apoptotic cell death was observed. In this paper, these processes were extensively studied by using the erythroleukemia K-562 cell line. On one hand, events of K-562 cell differentiation into erythrocytes after YTX treatment were studied using hemin as positive control of cell differentiation. Cell differentiation was studied through the cyclic nucleotide response element binding (phospho-CREB) and the transferrin receptor (TfR) expression. On the other hand, using rapamycin as positive control, autophagic hallmarks, as non-apoptotic cell death, were studied after toxin exposure. In this case, the mechanistic target of rapamycin (mTOR) and light chain 3B (LC3B) levels were measured to check autophagy activation. The results showed that cell differentiation was not occurring after 48 h of toxin incubation while at this time the autophagy was triggered. Furthermore after 24h of toxin treatment none of these processes were activated. In addition, the role of the type 4A phosphodiesterase (PDE4A), the intracellular target of YTX, was checked. PDE4A-silencing experiments showed different regulation steps of PDE4A in the autophagic processes triggered either by traditional compounds or YTX. In summary, after 48 h YTX treatment PDE4A-dependent autophagy, as non-apoptotic programmed cell death, is activated.
Collapse
Affiliation(s)
| | - A Alfonso
- Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - M R Vieytes
- Dept. Fisiología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - L M Botana
- Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain.
| |
Collapse
|
11
|
Fernández-Araujo A, Tobío A, Alfonso A, Botana LM. Role of AKAP 149-PKA-PDE4A complex in cell survival and cell differentiation processes. Int J Biochem Cell Biol 2014; 53:89-101. [PMID: 24813785 DOI: 10.1016/j.biocel.2014.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
The cellular localization of A-kinase anchoring proteins (AKAPs), protein kinase A (PKAs) and phosphodiesterases (PDEs) is a key step to the spatiotemporal regulation of the second messenger adenosine 3',5'-cyclic monophosphate (cAMP). In this paper the cellular distribution of the mitochondrial AKAP 149-PKA-PDE4A complex and its implications in the cell death induced by YTX treatment, a known PDE modulator, was studied. K-562 cell line was incubated with YTX for 24 or 48 h. Under these conditions AKAP 149, PKA and type-4A PDE (PDE4A) levels were measured in the cytosol, in the plasma membrane and in the nucleus. Apoptotic hallmarks were also measured after the same conditions. In addition, YTX effect on cell viability was checked after AKAP 149 and PDE4A silencing. The results obtained show a decrease in AKAP 149-PKA-PDE4A levels in cytosol after YTX exposure. 24h after the toxin addition, the complex expression increased in the plasma membrane and after 48 h in the nucleus domain. Furthermore Bcl-2 levels were decreased and the expression of caspase 3 together with caspase 8 activity were increased after 24h of toxin incubation but not after 48 h. These results suggest apoptotic cell death at 24h and a non-apoptotic cell death after 48 h. When AKAP 149 and PDE4A were silenced YTX did not induce cellular death. In summary, AKAP 149-PKA-PDE4A complex localization is related with YTX effect in K-562 cell line. When this complex is mainly located in the plasma membrane apoptosis is activated while when the complex is in the nuclear domain non-apoptotic cellular death or cellular differentiation is activated. Therefore AKAP 149-PKA-PDE4A distribution and integrity have a key role in cellular survival.
Collapse
Affiliation(s)
- A Fernández-Araujo
- Univ Santiago de Compostela, Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - A Tobío
- Univ Santiago de Compostela, Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - A Alfonso
- Univ Santiago de Compostela, Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain.
| | - L M Botana
- Univ Santiago de Compostela, Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain.
| |
Collapse
|
12
|
PIPKIIα is widely expressed in hematopoietic-derived cells and may play a role in the expression of alpha- and gamma-globins in K562 cells. Mol Cell Biochem 2014; 393:145-53. [DOI: 10.1007/s11010-014-2054-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
13
|
Sasaki H, Toda T, Furukawa T, Mawatari Y, Takaesu R, Shimizu M, Wada R, Kato D, Utsugi T, Ohtsu M, Murakami Y. α-1,6-Fucosyltransferase (FUT8) inhibits hemoglobin production during differentiation of murine and K562 human erythroleukemia cells. J Biol Chem 2013; 288:16839-16847. [PMID: 23609441 DOI: 10.1074/jbc.m113.459594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Erythropoiesis results from a complex combination of the expression of several transcription factor genes and cytokine signaling. However, the overall view of erythroid differentiation remains unclear. First, we screened for erythroid differentiation-related genes by comparing the expression profiles of high differentiation-inducible and low differentiation-inducible murine erythroleukemia cells. We identified that overexpression of α-1,6-fucosyltransferase (Fut8) inhibits hemoglobin production. FUT8 catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins via an α-1,6 linkage, leading to core fucosylation in mammals. Expression of Fut8 was down-regulated during chemically induced differentiation of murine erythroleukemia cells. Additionally, expression of Fut8 was positively regulated by c-Myc and c-Myb, which are known as suppressors of erythroid differentiation. Second, we found that FUT8 is the only fucosyltransferase family member that inhibits hemoglobin production. Functional analysis of FUT8 revealed that the donor substrate-binding domain and a flexible loop play essential roles in inhibition of hemoglobin production. This result clearly demonstrates that core fucosylation inhibits hemoglobin production. Third, FUT8 also inhibited hemoglobin production of human erythroleukemia K562 cells. Finally, a short hairpin RNA study showed that FUT8 down-regulation induced hemoglobin production and increase of transferrin receptor/glycophorin A-positive cells in human erythroleukemia K562 cells. Our findings define FUT8 as a novel factor for hemoglobin production and demonstrate that core fucosylation plays an important role in erythroid differentiation.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Takanori Toda
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Toru Furukawa
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Yuki Mawatari
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Rika Takaesu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Masashi Shimizu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Ryohei Wada
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Dai Kato
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Takahiko Utsugi
- Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101; Bio Matrix Research Inc., Chiba 270-0101, Japan
| | - Masaya Ohtsu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Yasufumi Murakami
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101; Bio Matrix Research Inc., Chiba 270-0101, Japan.
| |
Collapse
|
14
|
Potentiated activation of VLA-4 and VLA-5 accelerates proplatelet-like formation. Ann Hematol 2012; 91:1633-43. [PMID: 22644786 DOI: 10.1007/s00277-012-1498-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Fibronectin (FN) plays important roles in the proliferation, differentiation, and maintenance of megakaryocytic-lineage cells through FN receptors. However, substantial role of FN receptors and their functional assignment in proplatelet-like formation (PPF) of megakaryocytes are not yet fully understood. Herein, we investigated the effects of FN receptors on PPF using the CHRF-288 human megakaryoblastic cell line, which expresses VLA-4 and VLA-5 as FN receptors. FN and phorbol 12-myristate 13-acetate (PMA) were essential for inducing PPF in CHRF-288 cells. Blocking experiments using anti-β1-integrin monoclonal antibodies indicated that the adhesive interaction with FN via VLA-4 and VLA-5 were required for PPF. PPF induced by FN plus PMA was accelerated when CHRF-288 cells were enforced adhering to FN by TNIIIA2, a peptide derived from tenascin-C, which we recently found to induce β1-integrin activation. Adhesion to FN enhanced PMA-stimulated activation of extracellular signal-regulated protein kinase 1 (ERK1)/2 and enforced adhesion to FN via VLA-4 and VLA-5 by TNIIIA2-accelerated activation of ERK1/2 with FN plus PMA. However, c-Jun amino-terminal kinase 1 (JNK1), p38, and phosphoinositide-3 kinase (PI3K)/Akt were not stimulated by FN plus PMA, even with TNIIIA2. Thus, the enhanced activation of ERK1/2 by FN, PMA plus TNIIIA2 was responsible for acceleration of PPF with FN plus PMA.
Collapse
|
15
|
Modulation of Tumor Cell Survival, Proliferation, and Differentiation by the Peptide Derived from Tenascin-C: Implication of β1-Integrin Activation. Int J Cell Biol 2011; 2012:647594. [PMID: 22216033 PMCID: PMC3246736 DOI: 10.1155/2012/647594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022] Open
Abstract
Cell adhesion to extracellular matrix (ECM) participates in various biological processes, such as cell survival, proliferation, differentiation, and migration. Since these processes are essential for keeping homeostasis, aberration of these processes leads to a variety of diseases including cancer. Previously, we found that a peptide derived from tenascin- (TN-) C, termed TNIIIA2, stimulates cell adhesion to ECM through activation of β1-integrin. It has been shown that TNIIIA2 can modulate cell proliferation and differentiation. Interestingly, TNIIIA2 could not only enhance cell proliferation but also induce apoptotic cell death, depending on cellular context. In this review, we show the function of the peptide TNIIIA2 in cell survival, proliferation, and differentiation and refer to the possibility of new strategy for tumor suppression by regulating cell adhesion status using the ECM-derived functional peptides.
Collapse
|
16
|
Cataldi A, Di Giacomo V, Rapino M, Zara S, Rana RA. Ionizing radiation induces apoptotic signal through protein kinase Cdelta (delta) and survival signal through Akt and cyclic-nucleotide response element-binding protein (CREB) in Jurkat T cells. THE BIOLOGICAL BULLETIN 2009; 217:202-212. [PMID: 19875824 DOI: 10.1086/bblv217n2p202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although ionizing radiation induces a loss of proliferative capacity as well as cell death by apoptosis and necrosis, cells can oppose the damaging effects by activating survival signal pathways. Here we report the effect of 1.5- and 6-Gy doses of ionizing radiation on apoptotic protein kinase Cdelta (PKCdelta) and survival cyclic-nucleotide response element-binding protein (CREB) signal in Jurkat T cells. Cell cycle analysis, performed by flow cytometry, showed a significant G2M arrest 24 h after exposure to 6 Gy. This arrest was accompanied by dead cells, which increased in number up to 7 days, when cell viability was further reduced. The response was apparently promoted by caspase-3-mediated PKCdelta activation, and thus apoptosis. Moreover, the presence of viable cells up to 7 days in samples exposed to 6 Gy is explained by Akt activation, which may influence the nuclear transcription factor CREB, leading to resistance to ionizing radiation. Thus, the knowledge of apoptotic and survival pathways activated in tumor cells may help in establishing specific therapies by combining selective inhibitors or stimulators of key signaling proteins with conventional chemotherapy, hormone therapy, and radiotherapy.
Collapse
Affiliation(s)
- Amelia Cataldi
- Dipartimento di Biomorfologia, Universitá G. d'Annunzio, Chieti-Pescara, Italy.
| | | | | | | | | |
Collapse
|
17
|
Sztiller-Sikorska M, Jakubowska J, Wozniak M, Stasiak M, Czyz M. A non-apoptotic function of caspase-3 in pharmacologically-induced differentiation of K562 cells. Br J Pharmacol 2009; 157:1451-62. [PMID: 19627286 DOI: 10.1111/j.1476-5381.2009.00333.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Several anticancer drugs with diverse chemical structures can induce differentiation of cancer cells. This study was undertaken to explore the potential contribution of caspase-3 to pharmacologically-induced differentiation of K562 cells. EXPERIMENTAL APPROACH We assessed differentiation by measuring the expression of glycophorin A and haemoglobin synthesis in K562 cells treated with low concentrations of doxorubicin, hydroxyurea, cytosine arabinoside, cisplatin and haemin. Caspase-3 activation, mitochondrial membrane potential dissipation and viability were assessed by FACS. GATA-1-binding activity was evaluated by EMSA. KEY RESULTS Treatment of K562 cells with low concentrations of the tested drugs activated caspase-3 but did not trigger detectable apoptosis. Instead, elevated levels of haemoglobin-positive and glycophorin A/caspase-3-double-positive cells were observed, suggesting involvement of caspase-3 in drug-induced differentiation. Inhibition of caspase-3 activity significantly reduced the ability of K562 cells to execute the differentiation programme. Mitochondrial membrane potential dissipation was observed, indicating involvement of the mitochondrial pathway. Binding activity of GATA-1, transcription factor responsible for differentiation and cell survival, was not diminished by increased caspase-3 activity during drug-stimulated differentiation. CONCLUSIONS AND IMPLICATIONS Our results could explain how anticancer drugs, with diverse structures and modes of action, can stimulate erythroid differentiation in leukaemic cells with appropriate genetic backgrounds. Our findings imply that some similarities exist between pharmacologically-induced differentiation of erythroleukaemic cells and normal erythropoiesis, both involving caspase-3 activation at high levels of anti-apoptotic protein Bcl-X(L) and chaperone protein Hsp70 (heat shock protein 70). Therefore, the functions of caspase-3, unrelated to cell death, can be extended to pharmacologically-induced differentiation of some cancer cells.
Collapse
Affiliation(s)
- M Sztiller-Sikorska
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | | | | | | |
Collapse
|
18
|
Di Giacomo V, Sancilio S, Caravatta L, Rana RA, Di Pietro R, Cataldi A. Regulation of CREB activation by p38 mitogen activated protein kinase during human primary erythroblast differentiation. Int J Immunopathol Pharmacol 2009; 22:679-688. [PMID: 19822084 DOI: 10.1177/039463200902200313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among the molecular events underlying erythroid differentiation, we analyzed the signalling pathway leading to cAMP response element binding (CREB) nuclear transcription factor activation. Normal donor blood light density cells differentiated to pro-erythroblasts during the proliferative phase (10 days) of the human erythroblast massive amplification (HEMA) culture, and to orthochromatic erythroblasts, during the differentiation phase (4 additional days) of the culture. Since erythropoietin was present all over the culture, also pro-erythroblasts left in proliferative medium for 14 days continued their maturation without reaching the final steps of differentiation. p38 mitogen activated protein kinase (p38 MAPK) and CREB maximal activation occurred upon 4 days of differentiation induction, whereas a lower activation was detectable in the cells maintained in parallel in proliferative medium (14 days). Interestingly, when SB203580, a specific p38 MAPK inhibitor, was added to the culture the percentage of differentiated cells decreased along with p38 MAPK and CREB phosphorylation. All in all, our results evidence a role for p38 MAPK in activating CREB metabolic pathway in the events leading to erythroid differentiation.
Collapse
Affiliation(s)
- V Di Giacomo
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Chieti-Pescara, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Tanaka R, Owaki T, Kamiya S, Matsunaga T, Shimoda K, Kodama H, Hayashi R, Abe T, Harada YP, Shimonaka M, Yajima H, Terada H, Fukai F. VLA-5-mediated adhesion to fibronectin accelerates hemin-stimulated erythroid differentiation of K562 cells through induction of VLA-4 expression. J Biol Chem 2009; 284:19817-25. [PMID: 19460753 DOI: 10.1074/jbc.m109.009860] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin plays important roles in erythropoiesis through the fibronectin receptors VLA-4 and VLA-5. However, the substantial role of these fibronectin receptors and their functional assignment in erythroid differentiation are not yet fully understood. Here, we investigated the effects of cell adhesion to fibronectin on erythroid differentiation using K562 human erythroid progenitor cells. Erythroid differentiation could be induced in K562 cells in suspension by stimulating with hemin. This hemin-stimulated erythroid differentiation was highly accelerated when cells were induced to adhere to fibronectin by treatment with TNIIIA2, a peptide derived from tenascin-C, which has recently been found to induce beta1-integrin activation. Another integrin activator, Mn(2+), also accelerated hemin-stimulated erythroid differentiation. Adhesive interaction with fibronectin via VLA-4 as well as VLA-5 was responsible for acceleration of the hemin-stimulated erythroid differentiation in response to TNIIIA2, although K562 cells should have been lacking in VLA-4. Adhesion to fibronectin forced by TNIIIA2 causally induced VLA-4 expression in K562 cells, and this was blocked by the RGD peptide, an antagonist for VLA-5. The resulting adhesive interaction with fibronectin via VLA-4 strongly enhanced the hemin-stimulated activation of p38 mitogen-activated protein kinase, which was shown to serve as a signaling molecule crucial for erythroid differentiation. Suppression of VLA-4 expression by RNA interference abrogated acceleration of hemin-stimulated erythroid differentiation in response to TNIIIA2. Thus, VLA-4 and VLA-5 may contribute to erythropoiesis at different stages of erythroid differentiation.
Collapse
Affiliation(s)
- Rika Tanaka
- Department of Molecular Patho-Physiology, Tokyo University of Science, Noda-Shi, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Caravatta L, Sancilio S, di Giacomo V, Rana R, Cataldi A, Di Pietro R. PI3-K/Akt-dependent activation of cAMP-response element-binding (CREB) protein in Jurkat T leukemia cells treated with TRAIL. J Cell Physiol 2008; 214:192-200. [PMID: 17579344 DOI: 10.1002/jcp.21186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently demonstrated the activation of phosphatidylinositol 3-kinase (PI3-K/Akt) survival pathway in Jurkat T leukemia cells known for their sensitivity to the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2L cytotoxic action. The present investigation was done to elucidate the role of cAMP-response element-binding (CREB) protein in this system. Jurkat T cells were treated with 100-1,000 ng/ml TRAIL for time intervals up to 24 h in the presence or absence of selective pharmacologic inhibitors of PI3-K/Akt (LY294002) or p38 MAPK (SB253580) pathways. Upon TRAIL treatment, a dose-dependent increase in the percentage of apoptotic cells as well as in caspase-3 activity was observed. A further enhancement of apoptotic cell death was obtained with the use of CREB1 siRNA technology, as demonstrated by flow cytometry. Western blot analysis showed a high constitutive level of CREB phosphorylation at Ser(133) in Jurkat T cells under normal serum culture conditions. Under low serum culture conditions, an early (within 1 h) and transient increase in CREB phosphorylation was detected in response to both TRAIL doses and reduced upon pre-treatment with LY294002 or SB253580, demonstrating the PI3-K/Akt- and p38 MAPK-dependency of this effect. The parallel analysis in immune fluorescence demonstrated the nuclear translocation of the phosphorylated form upon treatment with 100 ng/ml TRAIL, whereas the immune labeling was mainly detectable in the cytoplasm compartment upon the higher more cytotoxic dose. These results let us hypothesize that CREB activation can be an important player in the complex cross-talk among pro- and anti-apoptotic pathways in this peculiar cell model.
Collapse
Affiliation(s)
- Luciana Caravatta
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Moosavi MA, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5'-triphosphate-mediated terminal erythroid differentiation of K562 cells. Int J Biochem Cell Biol 2007; 39:1685-97. [PMID: 17543571 DOI: 10.1016/j.biocel.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|