1
|
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT, Nguewa PA. BRCT Domains: Structure, Functions, and Implications in Disease-New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics 2023; 15:1839. [PMID: 37514027 PMCID: PMC10386641 DOI: 10.3390/pharmaceutics15071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new therapeutic targets and their implications in drug development remains an emerging scientific topic. BRCT-bearing proteins are found in Archaea, Bacteria, Eukarya, and viruses. They are traditionally involved in DNA repair, recombination, and cell cycle control. To carry out these functions, BRCT domains are able to interact with DNA and proteins. Moreover, such domains are also implicated in several pathogenic processes and malignancies including breast, ovarian, and lung cancer. Although these domains exhibit moderately conserved folding, their sequences show very low conservation. Interestingly, sequence variations among species are considered positive traits in the search for suitable therapeutic targets, since non-specific drug interactions might be reduced. These main characteristics of BRCT, as well as its critical implications in key biological processes in the cell, have prompted the study of these domains as therapeutic targets. This review explores the possible roles of BRCT domains as therapeutic targets for drug discovery. We describe their common structural features and relevant interactions and pathways, as well as their implications in pathologic processes. Drugs commonly used to target these domains are also presented. Finally, based on their structures, we describe new drug design possibilities using modern and innovative techniques.
Collapse
Affiliation(s)
- José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Alfonso T García-Sosa
- Chair of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Paul A Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
2
|
TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1. DNA Repair (Amst) 2022; 111:103278. [DOI: 10.1016/j.dnarep.2022.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
|
3
|
Day M, Oliver AW, Pearl LH. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair (Amst) 2021; 108:103232. [PMID: 34678589 PMCID: PMC8651625 DOI: 10.1016/j.dnarep.2021.103232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
4
|
Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 2014; 22:165-74. [PMID: 25087188 DOI: 10.1016/j.dnarep.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Human TopBP1 contains nine BRCT domains and functions in DNA replication initiation, checkpoint signalling, DNA repair and influences transcriptional control. TopBP1 and its homologues have been the subject of numerous scientific publications since the last comprehensive review in 2005, emerging as a key scaffold protein that links crucial components within these distinct cellular processes. This review focuses on recently published work, with particular emphasis on structural insights into TopBP1 function and the binding partners identified for DNA replication initiation, DNA-dependent checkpoints, DNA repair and transcription. We further summarise what is known about TopBP1 and links to human disease.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK.
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| |
Collapse
|
5
|
Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hänel F, Grosse F, Görlach M, Pospiech H. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 2012; 40:8309-24. [PMID: 22730300 PMCID: PMC3458545 DOI: 10.1093/nar/gks591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund–Thomson, RAPADILINO and Baller–Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid–state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73 Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix α3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstr. 11, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Loeffler PA, Cuneo MJ, Mueller GA, DeRose EF, Gabel SA, London RE. Structural studies of the PARP-1 BRCT domain. BMC STRUCTURAL BIOLOGY 2011; 11:37. [PMID: 21967661 PMCID: PMC3195086 DOI: 10.1186/1472-6807-11-37] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Background Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins localized to foci of DNA damage. Upon activation by encountering nicked DNA, the PARP-1 mediated trans-poly(ADP-ribosyl)ation of DNA binding proteins occurs, facilitating access and accumulation of DNA repair factors. PARP-1 also auto-(ADP-ribosyl)ates its central BRCT-containing domain forming part of an interaction site for the DNA repair scaffolding protein X-ray cross complementing group 1 protein (XRCC1). The co-localization of XRCC1, as well as bound DNA repair factors, to sites of DNA damage is important for cell survival and genomic integrity. Results Here we present the solution structure and biophysical characterization of the BRCT domain of rat PARP-1. The PARP-1 BRCT domain has the globular α/β fold characteristic of BRCT domains and has a thermal melting transition of 43.0°C. In contrast to a previous characterization of this domain, we demonstrate that it is monomeric in solution using both gel-filtration chromatography and small-angle X-ray scattering. Additionally, we report that the first BRCT domain of XRCC1 does not interact significantly with the PARP-1 BRCT domain in the absence of ADP-ribosylation. Moreover, none of the interactions with other longer PARP-1 constructs which previously had been demonstrated in a pull-down assay of mammalian cell extracts were detected. Conclusions The PARP-1 BRCT domain has the conserved BRCT fold that is known to be an important protein:protein interaction module in DNA repair and cell signalling pathways. Data indicating no significant protein:protein interactions between PARP-1 and XRCC1 likely results from the absence of poly(ADP-ribose) in one or both binding partners, and further implicates a poly(ADP-ribose)-dependent mechanism for localization of XRCC1 to sites of DNA damage.
Collapse
Affiliation(s)
- Paul A Loeffler
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77340, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
8
|
Leung CCY, Gong Z, Chen J, Glover JNM. Molecular basis of BACH1/FANCJ recognition by TopBP1 in DNA replication checkpoint control. J Biol Chem 2011; 286:4292-301. [PMID: 21127055 PMCID: PMC3039391 DOI: 10.1074/jbc.m110.189555] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/10/2010] [Indexed: 01/26/2023] Open
Abstract
The diverse roles of TopBP1 in DNA replication and checkpoint signaling are associated with the scaffolding ability of TopBP1 to initiate various protein-protein interactions. The recognition of the BACH1/FANCJ helicase by TopBP1 is critical for the activation of the DNA replication checkpoint at stalled replication forks and is facilitated by the C-terminal tandem BRCT7/8 domains of TopBP1 and a phosphorylated Thr(1133) binding motif in BACH1. Here we provide the structural basis for this interaction through analysis of the x-ray crystal structures of TopBP1 BRCT7/8 both free and in complex with a BACH1 phospho-peptide. In contrast to canonical BRCT-phospho-peptide recognition, TopBP1 BRCT7/8 undergoes a dramatic conformational change upon BACH1 binding such that the two BRCT repeats pivot about the central BRCT-BRCT interface to provide an extensive and deep peptide-binding cleft. Additionally, we provide the first structural mechanism for Thr(P) recognition among BRCT domains. Together with systematic mutagenesis studies, we highlight the role of key contacts in governing the unique specificity of the TopBP1-BACH1 interaction.
Collapse
Affiliation(s)
- Charles Chung Yun Leung
- From the Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Zihua Gong
- the Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Junjie Chen
- the Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - J. N. Mark Glover
- From the Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| |
Collapse
|
9
|
Functional interaction between type III-secreted protein IncA of Chlamydophila psittaci and human G3BP1. PLoS One 2011; 6:e16692. [PMID: 21304914 PMCID: PMC3031633 DOI: 10.1371/journal.pone.0016692] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation.
Collapse
|
10
|
Simbulan-Rosenthal CM, Rosenthal DS, Smulson ME. Purification and characterization of poly(ADP-ribosyl)ated DNA replication/repair complexes. Methods Mol Biol 2011; 780:165-90. [PMID: 21870261 DOI: 10.1007/978-1-61779-270-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PARP-1, the best studied isoform and most abundantly expressed member of the PARP family of 18 proteins, catalyzes the poly(ADP-ribosyl)ation (PARylation) of various nuclear proteins and play key roles in DNA repair, genome maintenance, DNA replication, recombination, apoptosis, gene expression, and regulation of chromatin function. PARylation modulates the functions of target proteins, mainly PARP-1 itself. A multifunctional enzyme, PARP-1 has been localized within DNA replication, repair, recombination, and transcription complexes, and modifies and regulates the functions of specific components of these complexes. PARylation can regulate the activities of replicative enzymes, such as DNA polymerases α, δ, and ε, topo I and II, primase, RPA, and PCNA in isolated enzymes or within DNA replication complexes (DNA synthesome). PARP-1 and PARylation may (1) play dual roles in nuclear processes, depending on the levels of the substrate NAD and the presence of PARP-activating DNA breaks, (2) recruit acceptor proteins to certain sites or complexes through direct association or through binding to PAR and PAR-binding proteins, and (3) alters the nucleosomal structure of DNA by PARylation of nucleosomal proteins, such as histone H1 to destabilize higher order chromatin structures and promote access of DNA repair and replication enzymes as well as transcription factors to these sites. Here, we describe biochemical approaches that have been utilized in our laboratory for the purification and characterization of PARylated DNA replicative complexes. These methods can be modified for the purification of complexes involved in other nuclear processes. This chapter also briefly discusses current methods by which new PARylated complexes are being identified and studied. Identification, evaluation, and characterization of new complexes could aid in the elucidation of the molecular mechanisms by which PARylation and PARP mediates its pleiotropic roles in various nuclear processes.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | | | | |
Collapse
|
11
|
Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol Cell Biol 2010; 30:5764-75. [PMID: 20956555 DOI: 10.1128/mcb.01645-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The eyes absent 1 protein (Eya1) plays an essential role in the development of various organs in both invertebrates and vertebrates. Mutations in the human EYA1 gene are linked to BOR (branchio-oto-renal) syndrome, characterized by kidney defects, hearing loss, and branchial arch anomalies. For a better understanding of Eya1's function, we have set out to identify new Eya1-interacting proteins. Here we report the identification of the related proteins Sipl1 (Shank-interacting protein-like 1) and Rbck1 (RBCC protein interacting with PKC1) as novel interaction partners of Eya1. We confirmed the interactions by glutathione S-transferase (GST) pulldown analysis and coimmunoprecipitation. A first mechanistic insight is provided by the demonstration that Sipl1 and Rbck1 enhance the function of Eya proteins to act as coactivators for the Six transcription factors. Using reverse transcriptase PCR (RT-PCR) and in situ hybridization, we show that Sipl1 and Rbck1 are coexpressed with Eya1 in several organs during embryogenesis of both the mouse and zebrafish. By morpholino-mediated knockdown, we demonstrate that the Sipl1 and Rbck1 orthologs are involved in different aspects of zebrafish development. In particular, knockdown of one Sipl1 ortholog as well as one Rbck1 ortholog led to a BOR syndrome-like phenotype, with characteristic defects in ear and branchial arch formation.
Collapse
|
12
|
Rappas M, Oliver AW, Pearl LH. Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res 2010; 39:313-24. [PMID: 20724438 PMCID: PMC3017600 DOI: 10.1093/nar/gkq743] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR–ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2.
Collapse
Affiliation(s)
- Mathieu Rappas
- Cancer Research UK DNA Repair Enzyme Group, Section of Structural Biology, The Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
13
|
Leung CCY, Kellogg E, Kuhnert A, Hänel F, Baker D, Glover JNM. Insights from the crystal structure of the sixth BRCT domain of topoisomerase IIbeta binding protein 1. Protein Sci 2010; 19:162-7. [PMID: 19937654 DOI: 10.1002/pro.290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Topoisomerase IIbeta binding protein 1 (TopBP1) is a major player in the DNA damage response and interacts with a number of protein partners via its eight BRCA1 carboxy-terminal (BRCT) domains. In particular, the sixth BRCT domain of TopBP1 has been implicated in binding to the phosphorylated transcription factor, E2F1, and poly(ADP-ribose) polymerase 1 (PARP-1), where the latter interaction is responsible for the poly(ADP-ribosyl)ation of TopBP1. To gain a better understanding of the nature of TopBP1 BRCT6 interactions, we solved the crystal structure of BRCT6 to 1.34 A. The crystal structure reveals a degenerate phospho-peptide binding pocket and lacks conserved hydrophobic residues involved in packing of tandem BRCT repeats, which, together with results from phospho-peptide binding studies, strongly suggest that TopBP1 BRCT6 independently does not function as a phospho-peptide binding domain. We further provide insight into poly(ADP-ribose) binding and sites of potential modification by PARP-1.
Collapse
|
14
|
Abstract
Human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and its orthologues in other organisms are proteins consisting of multiple BRCT modules that have acquired several functions during evolution. These proteins execute their tasks by interacting with a great variety of proteins involved in nuclear processes. TopBP1 is an essential protein that has numerous roles in the maintenance of the genomic integrity. In particular, it is required for the activation of ATM and Rad3-related (ATR), a vital regulator of DNA replication and replication stress response. The orthologues from yeast to human are involved in DNA replication and DNA damage response, while only proteins from higher eukaryotes are also involved in complex regulation of transcription, which is related to cell proliferation, damage response and apoptosis. We review here the recent progress in research aimed at elucidating the multiple cellular functions of TopBP1, focusing on metazoan systems.
Collapse
|
15
|
Abstract
Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.
Collapse
Affiliation(s)
- Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | |
Collapse
|