1
|
Neuroprotective Properties of Kempferol Derivatives from Maesa membranacea against Oxidative Stress-Induced Cell Damage: An Association with Cathepsin D Inhibition and PI3K/Akt Activation. Int J Mol Sci 2021; 22:ijms221910363. [PMID: 34638702 PMCID: PMC8509010 DOI: 10.3390/ijms221910363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
As components of the human diet with potential health benefits, flavonols are the subject of numerous studies, confirming their antioxidant, free radical scavenging and anti-inflammatory activity. Taking into consideration the postulated pathogenesis of certain CNS dysfunctions characterized by neuronal degradation, flavonols may prevent the decay of neurons in multiple pathways. Leaves of Maesa membranacea yielded several flavonol glycosides including α-rhamnoisorobin (kaempferol 7-O-α-rhamnoside) and kaempferitrin (kaempferol 3,7-di-O-α-rhamnoside). The latter compound was a major constituent of the investigated plant material. Neuroprotective effects of kaempferitrin and α-rhamnoisorobin were tested in vitro using H2O2-, 6-OHDA- and doxorubicin-induced models of SH-SY5Y cell damage. Both undifferentiated and differentiated neuroblastoma cells were used in the experiments. α-Rhamnoisorobin at a concentration range of 1–10 µM demonstrated cytoprotective effects against H2O2-induced cell damage. The compound (at 1–10 µM) was also effective in attenuating 6-OHDA-induced neurotoxicity. In both H2O2- and 6-OHDA-induced cell damage, kaempferitrin, similar to isoquercitrin, demonstrated neuroprotective activity at the highest of the tested concentrations (50 µM). The tested flavonols were not effective in counteracting doxorubicin-induced cytotoxicity. Their caspase-3- and cathepsin D-inhibitory activities appeared to be structure dependent. Inhibition of the PI3-K/Akt pathway abolished the neuroprotective effect of the investigated flavonols.
Collapse
|
2
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jantas D, Chwastek J, Malarz J, Stojakowska A, Lasoń W. Neuroprotective Effects of Methyl Caffeate against Hydrogen Peroxide-Induced Cell Damage: Involvement of Caspase 3 and Cathepsin D Inhibition. Biomolecules 2020; 10:E1530. [PMID: 33182454 PMCID: PMC7696984 DOI: 10.3390/biom10111530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Finding effective neuroprotective strategies to combat various neurodegenerative disorders still remain a clinically unmet need. Methyl caffeate (MC), a naturally occurring ester of caffeic acid, possesses antioxidant and anti-inflammatory activities; however, its role in neuroprotection is less investigated. In order to better characterize neuroprotective properties of MC, we tested its effectiveness in various models of neuronal cell injury in human neuroblastoma SH-SY5Y cells and in mouse primary neuronal cell cultures. MC at micromolar concentrations attenuated neuronal cell damage induced by hydrogen peroxide (H2O2) in undifferentiated and neuronal differentiated SH-SY5Y cells as well as in primary cortical neurons. This effect was associated with inhibition of both caspase-3 and cathepsin D but without involvement of the PI3-K/Akt pathway. MC was neuroprotective when given before and during but not after the induction of cell damage by H2O2. Moreover, MC was protective against 6-OHDA-evoked neurotoxicity in neuronal differentiated SH-SY5Y cells via inhibition of necrotic and apoptotic processes. On the other hand, MC was ineffective in models of excitotoxicity (induced by glutamate or oxygen-glucose deprivation) and even moderately augmented cytotoxic effects of the classical apoptotic inducer, staurosporine. Finally, in undifferentiated neuroblastoma cells MC at higher concentrations (above 50 microM) induced cell death and when combined with the chemotherapeutic agent, doxorubicin, it increased the cell damaging effects of the latter compound. Thus, neuroprotective properties of MC appear to be limited to certain models of neurotoxicity and depend on its concentrations and time of administration.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Janusz Malarz
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Anna Stojakowska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| |
Collapse
|
4
|
Jantas D, Chwastek J, Grygier B, Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress-Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox Res 2020; 37:525-542. [PMID: 31960265 PMCID: PMC7062871 DOI: 10.1007/s12640-020-00164-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress–induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10–40 μM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress–induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type–specific interplay between necroptosis and apoptosis has been demonstrated.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
5
|
Suvanish Kumar VS, Pretorius E, Rajanikant GK. The Synergistic Combination of Everolimus and Paroxetine Exerts Post-ischemic Neuroprotection In Vitro. Cell Mol Neurobiol 2018; 38:1383-1397. [PMID: 30062636 PMCID: PMC11481845 DOI: 10.1007/s10571-018-0605-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a debilitating multi-factorial cerebrovascular disorder, representing an area of tremendous unmet medical need. Combination treatment has been proposed as a promising therapeutic approach towards combating ischemic stroke. The present study employs in vitro oxygen glucose deprivation (OGD) model to evaluate the post-ischemic neuroprotective efficacy of Everolimus and Paroxetine, alone and in combination. Post-OGD treatment with Everolimus and Paroxetine, alone or in combination, significantly improved the cell survival (~ 80%) when compared to the cells subjected to ischemic injury alone. The individual neuroprotective doses of Everolimus and Paroxetine were found to be at 6.25 and 25 nM, respectively. Whereas, the synergistic neuroprotective dose for Everolimus:Paroxetine was 2:10 nM, calculated using the Chou-Talalay combination index and other four mathematical models. The synergistic combination dose downregulated neuroinflammatory genes (Tnf-α, Il1b, Nf-κB, and iNos) and upregulated the neuroprotective genes (Bcl-2, Bcl-xl, Hif-1, and Epo). The mitochondrial functioning and ROS neutralizing ability increased with combination treatment. Further, the active role of nitric oxide synthase and calmodulin were revealed while exploring the bio-activity of Everolimus and Paroxetine through network pharmacology. The present study for the first time demonstrates the synergistic post-ischemic neuroprotective efficacy of combination treatment with Everolimus and Paroxetine in vitro. Taken together, these findings clearly suggest that Everolimus in combination with Paroxetine may represent a promising therapeutic strategy for the treatment of ischemic stroke, further supporting the combination treatment strategy for this debilitating disorder.
Collapse
Affiliation(s)
- V S Suvanish Kumar
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Matieland, 7602, South Africa
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
6
|
Almeida D, Pinho R, Correia V, Soares J, Bastos MDL, Carvalho F, Capela JP, Costa VM. Mitoxantrone is More Toxic than Doxorubicin in SH-SY5Y Human Cells: A 'Chemobrain' In Vitro Study. Pharmaceuticals (Basel) 2018; 11:41. [PMID: 29734752 PMCID: PMC6027466 DOI: 10.3390/ph11020041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022] Open
Abstract
The potential neurotoxic effects of anticancer drugs, like doxorubicin (DOX) and mitoxantrone (MTX; also used in multiple sclerosis), are presently important reasons for concern, following epidemiological data indicating that cancer survivors submitted to chemotherapy may suffer cognitive deficits. We evaluated the in vitro neurotoxicity of two commonly used chemotherapeutic drugs, DOX and MTX, and study their underlying mechanisms in the SH-SY5Y human neuronal cell model. Undifferentiated human SH-SY5Y cells were exposed to DOX or MTX (0.13, 0.2 and 0.5 μM) for 48 h and two cytotoxicity assays were performed, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction and the neutral red (NR) incorporation assays. Phase contrast microphotographs, Hoechst, and acridine orange/ethidium bromide stains were performed. Mitochondrial membrane potential was also assessed. Moreover, putative protective drugs, namely the antioxidants N-acetyl-l-cysteine (NAC; 1 mM) and 100 μM tiron, the inhibitor of caspase-3/7, Ac-DEVD-CHO (100 μM), and a protein synthesis inhibitor, cycloheximide (CHX; 10 nM), were tested to prevent DOX- or MTX-induced toxicity. The MTT reduction assay was also done in differentiated SH-SY5Y cells following exposure to 0.2 μM DOX or MTX. MTX was more toxic than DOX in both cytotoxicity assays and according to the morphological analyses. MTX also evoked a higher number of apoptotic nuclei than DOX. Both drugs, at the 0.13 μM concentration, caused mitochondrial membrane potential depolarization after a 48-h exposure. Regarding the putative neuroprotectors, 1 mM NAC was not able to prevent the cytotoxicity caused by either drug. Notwithstanding, 100 μM tiron was capable of partially reverting MTX-induced cytotoxicity in the NR uptake assay. One hundred μM Ac-DEVD-CHO and 10 nM cycloheximide (CHX) also partially prevented the toxicity induced by DOX in the NR uptake assay. MTX was more toxic than DOX in differentiated SH-SY5Y cells, while MTX had similar toxicity in differentiated and undifferentiated SH-SY5Y cells. In fact, MTX was the most neurotoxic drug tested and the mechanisms involved seem dissimilar among drugs. Thus, its toxicity mechanisms need to be further investigated as to determine the putative neurotoxicity for multiple sclerosis and cancer patients.
Collapse
Affiliation(s)
- Daniela Almeida
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Rita Pinho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Verónica Correia
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
8
|
Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 2014; 9:2032-48. [PMID: 24937102 PMCID: PMC4168797 DOI: 10.1021/cb400894a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Parkinson’s
disease (PD) is a multifactorial disorder with
a complex etiology including genetic risk factors, environmental exposures,
and aging. While energy failure and oxidative stress have largely
been associated with the loss of dopaminergic cells in PD and the
toxicity induced by mitochondrial/environmental toxins, very little
is known regarding the alterations in energy metabolism associated
with mitochondrial dysfunction and their causative role in cell death
progression. In this study, we investigated the alterations in the
energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial
toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or
different mechanisms of toxicity. A combined metabolomics approach
using nuclear magnetic resonance (NMR) and direct-infusion electrospray
ionization mass spectrometry (DI-ESI-MS) was used to identify unique
metabolic profile changes in response to these neurotoxins. Paraquat
exposure induced the most profound alterations in the pentose phosphate
pathway (PPP) metabolome. 13C-glucose flux analysis corroborated
that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate,
glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat
treatment, which was paralleled by inhibition of glycolysis and the
TCA cycle. Proteomic analysis also found an increase in the expression
of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing
equivalents by regenerating nicotinamide adenine dinucleotide phosphate
(NADPH) levels. Overexpression of G6PD selectively increased paraquat
toxicity, while its inhibition with 6-aminonicotinamide inhibited
paraquat-induced oxidative stress and cell death. These results suggest
that paraquat “hijacks” the PPP to increase NADPH reducing
equivalents and stimulate paraquat redox cycling, oxidative stress,
and cell death. Our study clearly demonstrates that alterations in
energy metabolism, which are specific for distinct mitochondiral/environmental
toxins, are not bystanders to energy failure but also contribute significant
to cell death progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert C. Stanton
- Research
Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
9
|
The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells. Stem Cells Int 2014; 2014:438352. [PMID: 25132857 PMCID: PMC4124228 DOI: 10.1155/2014/438352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs) isolated from human bone-marrow (BMSCs) and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs)) on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y). For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM) from the MSCs populations referred above. Retinoic acid cultured cells were used as control for neuronal differentiated SH-SY5Y cells. SH-SY5Y cells viability assessment revealed that the secretome of BMSCs and HUCPVCs, in the form of CM, was able to induce their survival. Moreover, immunocytochemical experiments showed that CM from both MSCs was capable of inducing neuronal differentiation of SH-SY5Y cells. Finally, neurite lengths assessment and quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis demonstrated that CM from BMSCs and HUCPVCs differently induced neurite outgrowth and mRNA levels of neuronal markers exhibited by SH-SY5Y cells. Overall, our results show that the secretome of both BMSCs and HUCPVCs was capable of supporting SH-SY5Y cells survival and promoting their differentiation towards a neuronal phenotype.
Collapse
|
10
|
Elliott S, Swift S, Busse L, Scully S, Van G, Rossi J, Johnson C. Epo receptors are not detectable in primary human tumor tissue samples. PLoS One 2013; 8:e68083. [PMID: 23861852 PMCID: PMC3701640 DOI: 10.1371/journal.pone.0068083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 01/03/2023] Open
Abstract
Erythropoietin (Epo) is a cytokine that binds and activates an Epo receptor (EpoR) expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment, low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82), little/no EpoR protein was detected and it was not functional. In contrast, EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7) and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20), and functional responses to rHuEpo were reported with MCF-7 cells. In another study, a functional response was reported with the lung tumor cell line (NCI-H838) at physiological levels of rHuEpo. However, the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82, no EpoR protein was detectable in normal human and matching cancer tissues from breast, lung, colon, ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells, but no rHuEpo-induced phosphorylation of AKT, STAT3, pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.
Collapse
Affiliation(s)
- Steve Elliott
- Amgen Inc, Thousand Oaks, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
11
|
The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int 2013; 84:468-81. [PMID: 23636173 PMCID: PMC3758776 DOI: 10.1038/ki.2013.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 12/22/2022]
Abstract
Although the role of the erythropoietin (EPO) receptor (EpoR) in erythropoiesis has been known for decades, its role in nonhematopoietic tissues is still not well defined. Klotho has been shown and EPo has been suggested to protect against acute ischemia-reperfusion injury in the kidney. Here we found in rat kidney and in a rat renal tubular epithelial cell line (NRK cells) EpoR transcript and antigen, and EpoR activity signified as EPo-induced phosphorylation of Jak2, ErK, Akt, and Stat5 indicating the presence of functional EpoR. Transgenic overexpression of Klotho or addition of exogenous recombinant Klotho increased kidney EpoR protein and transcript. In NRK cells, Klotho increased EpoR protein, enhanced EPo-triggered phosphorylation of Jak2 and Stat5, the nuclear translocation of phospho-Stat5, and protected NRK cells from hydrogen peroxide cytotoxicity. Knockdown of endogenous EpoR rendered NRK cells more vulnerable, and overexpression of EpoR more resistant to peroxide-induced cytotoxicity, indicating that EpoR mitigates oxidative damage. Knockdown of EpoR by siRNA abolished Epo-induced Jak2, and Stat5 phosphorylation, and blunted the protective effect of Klotho against peroxide-induced cytotoxicity. Thus in the kidney, EpoR and its activity are downstream effectors of Klotho enabling it to function as a cytoprotective protein against oxidative injury.
Collapse
|
12
|
Jantas D, Roman A, Kuśmierczyk J, Lorenc-Koci E, Konieczny J, Lenda T, Lasoń W. The extent of neurodegeneration and neuroprotection in two chemical in vitro models related to Parkinson's disease is critically dependent on cell culture conditions. Neurotox Res 2013; 24:41-54. [PMID: 23307753 DOI: 10.1007/s12640-012-9374-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 01/21/2023]
Abstract
The proteasome inhibition and mitochondrial dysfunction are involved in pathomechanism of Parkinson's disease. The main aim of this study was to assess how particular culture conditions of human dopaminergic neuroblastoma SH-SY5Y cells could affect the extent of neurodegeneration induced by proteasome inhibitor-lactacystin (LC) and mitochondrial toxin-rotenone (Rot). This study revealed that induction of neuronal differentiation of SH-SY5Y cells with retinoic acid (RA-SH-SY5Y) caused a higher resistance of these cells to LC-evoked cell death when compared to undifferentiated cells (UN-SH-SY5Y). In contrast, RA-SH-SY5Y cells were more vulnerable than the UN-SH-SY5Y to Rot-induced cell damage. Furthermore, we found that a prolonged incubation of the cells under low serum condition (PLSC) significantly increased the LC toxicity in both differentiated and undifferentiated cells. Next, the effects of combined treatment with LC and Rot on cell viability were studied in RA-SH-SY5Y cells under PLSC and normal low serum condition (NLSC). At a low concentration, Rot (0.001-1 μM) attenuated the LC-evoked cell death in RA-SH-SY5Y cells exposed to NLSC. In contrast, under PLSC low concentrations of Rot lacked neuroprotective action while its higher levels (10 μM) enhanced the LC toxicity. Further, we showed that low concentrations of celastrol (Cel; 0.001 μM), a putative neuroprotective agent with antioxidant and anti-inflammatory properties, were able to partially attenuate the Rot-evoked toxicity under both PLSC and NLSC. On the other hand, Cel (0.001 and 0.01 μM) attenuated the LC-induced cell damage only under PLSC. Interestingly, higher concentrations of Cel (>1 μM) reduced cell viability in both UN- and RA-SH-SY5Y but only in UN-SH-SY5Y cells the effect was enhanced under PLSC. The obtained data indicate that toxicity of LC and Rot in SH-SY5Y cell line depends on the stage of cell differentiation and is enhanced in cells cultured for a longer time in low serum medium. Moreover, the neuroprotective properties of Rot and Cel against the LC-induced cell damage can be observed only under particular low serum conditions.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|