1
|
Liu Z, Wang H, Dai L, Zeng H, Zhong X. Y-box binding protein 1: A critical target for understanding and treating cardiovascular disease. Cell Signal 2025; 132:111797. [PMID: 40204098 DOI: 10.1016/j.cellsig.2025.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Cardiovascular diseases (CVDs) remain a significant public health burden, characterized by escalating morbidity and mortality rates and demanding novel therapeutic approaches. Cold shock protein Y-box binding protein 1 (YB-1), a highly conserved RNA/DNA-binding protein, has emerged as a pivotal regulator in various pathophysiological processes, including CVDs. YB-1 exerts pleiotropic functions by modulating gene transcription, pre-mRNA splicing, mRNA translation, and stability. The expression and function of YB-1 are intricately regulated by its subcellular localization, post-translational modifications, upstream regulatory signals. YB-1 plays a multifaceted role in CVDs, influencing inflammation, oxidative stress, cell proliferation, apoptosis, phenotypic switching of smooth muscle cells, and mitochondrial dysfunction. However, the regulation of YB-1 expression and function in CVDs is complex and context-dependent, exhibiting divergent effects even in the same disease across different cell types or at disease stages. This review comprehensively explores the structure, regulation, and functional significance of YB-1 in CVDs. We delve into the transcriptional and translational control mechanisms of YB-1, as well as its post-translational modifications. Furthermore, we elucidate the upstream signaling pathways that influence YB-1 expression, with a particular emphasis on non-coding RNAs and specific upstream molecules. Finally, we systematically examine the role of YB-1 in CVDs, summarizing its expression patterns, regulatory mechanisms, and therapeutic potential as a promising target for novel therapeutic interventions. By providing a comprehensive overview of YB-1's involvement in CVDs, this review aims to stimulate further research and facilitate the development of targeted therapies to improve cardiovascular health.
Collapse
Affiliation(s)
- Zixuan Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Lei Dai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hesong Zeng
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| | - Xiaodan Zhong
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Chen L, Zhou Q, Liu E, Zhang J, Duan L, Zhu D, Chen J, Duan Y. rSjp40 inhibits activated hepatic stellate cells by promoting nuclear translocation of YB1 and inducing BMP-7/Smad1/5/8 pathway. Parasit Vectors 2019; 12:279. [PMID: 31151477 PMCID: PMC6545069 DOI: 10.1186/s13071-019-3539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Activation of hepatic stellate cells is the dominant pathogenic event during the process of liver fibrosis. Bone morphogenic protein (BMP)-7 has recently been identified as an anti-fibrotic factor and leads to phosphorylation of Smad1/5/8 in activated hepatic stellate cells. Its expression can be upregulated by the transcriptional activator, Y-Box protein-1 (YB1). Previous studies have found that the recombinant Schistosoma japonicum protein p40 (rSjp40) can inhibit the activation of hepatic stellate cells, and based on this evidence we attempted to investigate whether or not BMP-7 is involved in rSjp40’s inhibition. Methods A human hepatic stellate cell line, the LX-2 cell line, was cultured and treated with rSjp40. The role of BMP-7 was analyzed by Western blot. Results Our findings testified that knockdown of BMP-7 impaired rSjp40-induced downregulation of α-SMA and phosphorylation of Smad1/5/8 in LX-2 cells. Furthermore, rSjp40 upregulated expression of BMP-7 at both mRNA and protein levels depending on YB1. Interestingly, YB1 was translocated from the cytoplasm to the nucleus upon treatment of rSjp40. Conclusions These results suggest that rSjp40 inhibits the activation of hepatic stellate cells by promoting nuclear translocation of YB1 and inducing BMP-7/Smad1/5/8 pathway, which provide a new clue to guide ongoing research into the anti-fibrosis of rSjp40.
Collapse
Affiliation(s)
- Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qi Zhou
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ertao Liu
- Department of Orthopedics, Nantong Fourth People's Hospital, Nantong, 226005, Jiangsu, People's Republic of China
| | - Jiali Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Characterization of Two Dinoflagellate Cold Shock Domain Proteins. mSphere 2016; 1:mSphere00034-15. [PMID: 27303711 PMCID: PMC4863620 DOI: 10.1128/msphere.00034-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/05/2015] [Indexed: 01/16/2023] Open
Abstract
Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists.
Collapse
|
4
|
Park JH, Kang HJ, Kang SI, Lee JE, Hur J, Ge K, Mueller E, Li H, Lee BC, Lee SB. A multifunctional protein, EWS, is essential for early brown fat lineage determination. Dev Cell 2013; 26:393-404. [PMID: 23987512 DOI: 10.1016/j.devcel.2013.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
The recent surge in obesity has provided an impetus to better understand the mechanisms of adipogenesis, particularly in brown adipose tissue (BAT) because of its potential utilization for antiobesity therapy. Postnatal brown adipocytes arise from early muscle progenitors, but how brown fat lineage is determined is not completely understood. Here, we show that a multifunctional protein, Ewing Sarcoma (EWS), is essential for determining brown fat lineage during development. BATs from Ews null embryos and newborns are developmentally arrested. Ews mutant brown preadipocytes fail to differentiate due to loss of Bmp7 expression, a critical early brown adipogenic factor. We demonstrate that EWS, along with its binding partner Y-box binding protein 1 (YBX1), activates Bmp7 transcription. Depletion of either Ews or Ybx1 leads to loss of Bmp7 expression and brown adipogenesis. Remarkably, Ews null BATs and brown preadipocytes ectopically express myogenic genes. These results demonstrate that EWS is essential for early brown fat lineage determination.
Collapse
Affiliation(s)
- Jun Hong Park
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Qu Y, Du E, Zhang Y, Li S, Han R, Qiu M. Changes in the expression of bone morphogenetic protein 7 and tamm- horsfall protein in the early stages of diabetic nephropathy. Nephrourol Mon 2012; 4:466-9. [PMID: 23573468 PMCID: PMC3614272 DOI: 10.5812/numonthly.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 7 (BMP7) has been suggested to play a protective role against kidney injury in chronic kidney disease. OBJECTIVES To identify the critical molecular regulators in the early stage of diabetic nephropathy, we studied the expression of BMP7 and 2 important kidney-specific markers, podocin and Tamm-Horsfall protein (THP). MATERIALS AND METHODS A diabetic nephropathy model was established by intraperitoneally injecting streptozotocin (STZ) in male Kunming mice. Kidney weight index was used as an indicator of early renal injury. Kidney tissue from the diabetic model mice was obtained at 4, 8, and 12 weeks, and total protein was extracted to assess the expression of BMP7, podocin, and THP by western blot analysis. RESULTS Diabetic model mice were successfully established, and the kidney weight index of the model animals increased significantly. The expression of BMP7 was significantly downregulated, while the expression of THP was increased in the early stage of diabetic nephropathy. However, the expression of podocin did not change. CONCLUSIONS Our observations suggested that down-regulation of BMP7 expression and up-regulation of THP expression were early events that occur prior to podocyte injury with the structure protein, podocin spoiled, which further confirmed that BMP7 is a key molecular regulator in the early stage of diabetic nephropathy.
Collapse
Affiliation(s)
- Yanchun Qu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
- Corresponding author: Yanchun Qu, Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, 300211, Tianjin, China. Tel.: +86-2288326390, Fax: +86-2288326188, E-mail:
| | - E Du
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shengzhi Li
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Ruifa Han
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Mengsheng Qiu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem 2012; 287:7345-56. [PMID: 22241473 DOI: 10.1074/jbc.m111.334599] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) regulates genes involved in lipid and bile acid synthesis, gluconeogenesis, amino acid metabolism, and blood coagulation. In addition to its metabolic role, HNF4α is critical for hepatocyte differentiation, and loss of HNF4α is associated with hepatocellular carcinoma. The hepatocyte-specific Hnf4a knock-out mouse develops severe hepatomegaly and steatosis resulting in premature death, thereby limiting studies of the role of this transcription factor in the adult animal. In addition, gene compensation may complicate analysis of the phenotype of these mice. To overcome these issues, an acute Hnf4a knock-out mouse model was generated through use of the tamoxifen-inducible ErT2cre coupled to the serum albumin gene promoter. Microarray expression analysis revealed up-regulation of genes associated with proliferation and cell cycle control only in the acute liver-specific Hnf4α-null mouse. BrdU and ki67 staining confirmed extensive hepatocyte proliferation in this model. Proliferation was associated with induction of the hepatomitogen Bmp7 as well as reduced basal apoptotic activity. The p53/p63 apoptosis effector gene Perp was further identified as a direct HNF4α target gene. These data suggest that HNF4α maintains hepatocyte differentiation in the adult healthy liver, and its loss may directly contribute to hepatocellular carcinoma development, thus indicating this factor as a possible liver tumor suppressor gene.
Collapse
Affiliation(s)
- Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|