1
|
Milanetti E, Miotto M, Bo' L, Di Rienzo L, Ruocco G. Investigating the competition between ACE2 natural molecular interactors and SARS-CoV-2 candidate inhibitors. Chem Biol Interact 2023; 374:110380. [PMID: 36822303 PMCID: PMC9942480 DOI: 10.1016/j.cbi.2023.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
The SARS-CoV-2 pandemic still poses a threat to the global health as the virus continues spreading in most countries. Therefore, the identification of molecules capable of inhibiting the binding between the ACE2 receptor and the SARS-CoV-2 spike protein is of paramount importance. Recently, two DNA aptamers were designed with the aim to inhibit the interaction between the ACE2 receptor and the spike protein of SARS-CoV-2. Indeed, the two molecules interact with the ACE2 receptor in the region around the K353 residue, preventing its binding of the spike protein. If on the one hand this inhibition process hinders the entry of the virus into the host cell, it could lead to a series of side effects, both in physiological and pathological conditions, preventing the correct functioning of the ACE2 receptor. Here, we discuss through a computational study the possible effect of these two very promising DNA aptamers, investigating all possible interactions between ACE2 and its experimentally known molecular partners. Our in silico predictions show that some of the 10 known molecular partners of ACE2 could interact, physiologically or pathologically, in a region adjacent to the K353 residue. Thus, the curative action of the proposed DNA aptamers could recruit ACE2 from its biological functions.
Collapse
Affiliation(s)
- Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Leonardo Bo'
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
2
|
Zhang Y, Zhang W, Zhang R, Xia Y. Knockdown of FBLN2 suppresses TGF-β1-induced MRC-5 cell migration and fibrosis by downregulating VTN. Tissue Cell 2023; 81:102005. [PMID: 36608640 DOI: 10.1016/j.tice.2022.102005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common chronic and progressive lung disease. Fibulin-2 (FBLN2) is upregulated in patients with IPF; however, its exact role in IPF remains unclear. The present study aimed to investigate the role and the regulatory mechanism of FBLN2 in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell transfection was performed to regulate FBLN2 expression. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of FBLN2 and vitronectin (VTN). Cell viability and migration were determined via the Cell Counting Kit-8 and wound healing assays, respectively. Immunofluorescence was performed to detect α-smooth muscle actin (α-SMA)-positive cells. The STRING database was used to predict the interaction between FBLN2 and VTN, which was verified via the protein immunoprecipitation assay. The results demonstrated that inhibition of FBLN2 notably inhibited TGF-β1-induced proliferation and migration, as well as downregulating the protein expression levels of MMP2 and MMP9 in MRC-5 cells. In addition, inhibition of FBLN2 suppressed the expression levels of α-SMA, collagen type 1 α1 and fibronectin. FBLN2 was demonstrated to bind to VTN and negatively regulate its expression. Furthermore, overexpression of VTN partly abolished the inhibitory effects of FBLN2 knockdown on TGF-β1-induced proliferation, migration and fibrosis, as well as the activity of focal adhesion kinase (FAK) signaling. Taken together, the results of the present study suggest that FBLN2 knockdown can attenuate TGF-β1-induced fibrosis in MRC-5 cells by downregulating VTN expression via FAK signaling. Thus, FBLN2 may be a potential therapeutic target for IPF treatment.
Collapse
Affiliation(s)
- Yanju Zhang
- Infection Management Office, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weishuai Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunfei Xia
- Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Deligiorgi MV, Trafalis DT. The Intriguing Thyroid Hormones-Lung Cancer Association as Exemplification of the Thyroid Hormones-Cancer Association: Three Decades of Evolving Research. Int J Mol Sci 2021; 23:436. [PMID: 35008863 PMCID: PMC8745569 DOI: 10.3390/ijms23010436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Exemplifying the long-pursued thyroid hormones (TH)-cancer association, the TH-lung cancer association is a compelling, yet elusive, issue. The present narrative review provides background knowledge on the molecular aspects of TH actions, with focus on the contribution of TH to hallmarks of cancer. Then, it provides a comprehensive overview of data pertinent to the TH-lung cancer association garnered over the last three decades and identifies obstacles that need to be overcome to enable harnessing this association in the clinical setting. TH contribute to all hallmarks of cancer through integration of diverse actions, currently classified according to molecular background. Despite the increasingly recognized implication of TH in lung cancer, three pending queries need to be resolved to empower a tailored approach: (1) How to stratify patients with TH-sensitive lung tumors? (2) How is determined whether TH promote or inhibit lung cancer progression? (3) How to mimic the antitumor and/or abrogate the tumor-promoting TH actions in lung cancer? To address these queries, research should prioritize the elucidation of the crosstalk between TH signaling and oncogenic signaling implicated in lung cancer initiation and progression, and the development of efficient, safe, and feasible strategies leveraging this crosstalk in therapeutics.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias Str, 11527 Athens, Greece;
| | | |
Collapse
|
4
|
Abstract
Breast Cancer is the most common form of cancer in women worldwide, impacting nearly 2.1 million women each year. Identification of new biomarkers could be key for early diagnosis and detection. Vitronectin, a glycoprotein that is abundantly found in serum, extracellular matrix, and bone, binds to integrin αvβ3, and promotes cell adhesion and migration. Current studies indicate that patients with amplified vitronectin levels have lower survival rates than patients without amplified vitronectin levels. In this study, we focused on the role of vitronectin in breast cancer survival and its functional role as a non-invasive biomarker for early stage and stage specific breast cancer detection. To confirm that the expression of vitronectin is amplified in breast cancer, a total of 240 serum samples (n = 240), 200 from breast cancer patients and 40 controls were analyzed using the Reverse Phase Protein Array (RPPA) technique. Of the 240 samples, 120 samples were of African American (AA) descent, while the other 120 were of White American (WA) descent. Data indicated that there were some possible racial disparities in vitronectin levels and, differences also seen in the recurrent patient samples. Next, we tried to uncover the underlying mechanism which plays a critical role in vitronectin expression. The cellular data from four different breast cancer cell lines- MCF7, MDA-MB-231, MDA-MB-468, and HCC1599 indicated that the PI3K/AKT axis is modulating the expression of vitronectin. We believe that vitronectin concentration levels are involved and connected to the metastasis of breast cancer in certain patients, specifically based on recurrence or ethnicity, which is detrimental for poor prognosis. Therefore, in this current study we showed that the serum vitronectin levels could be an early marker for the breast cancer survival and we also determine the cellular signaling factors which modulate the expression and concentration of vitronectin.
Collapse
|
5
|
Goyal U, Ta M. A novel role of vitronectin in promoting survival of mesenchymal stem cells under serum deprivation stress. Stem Cell Res Ther 2020; 11:181. [PMID: 32429996 PMCID: PMC7238575 DOI: 10.1186/s13287-020-01682-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Due to their immunomodulatory and trophic support functions, mesenchymal stem cells (MSCs) are promising in the field of cell-based regenerative medicine. However, MSC survival post-transplantation is challenged by various microenvironment stress factors. Here, we investigated the role of vitronectin (VTN) in the survival strategy of MSCs under serum deprivation stress condition. Methods Proliferation kinetics and cell adhesion of MSCs under serum deprivation were determined from population doublings and cell-matrix de-adhesion studies, respectively. mRNA and protein expression levels of VTN were confirmed by qRT-PCR and Western blotting, respectively. Immunofluorescence technique revealed distribution of VTN under serum deprivation stress. siRNA and inhibitor-based studies were performed to confirm the role and regulation of VTN. Apoptosis and cell cycle status of MSCs were assessed using flow cytometric analysis. Results Subjecting MSCs to serum deprivation led to significant increase in cell spread area and cell-matrix adhesion. An upregulation of VTN expression was noted with an arrest in G0/G1 phase of cell cycle and no appreciable apoptotic change. Pro-survival PI3kinase pathway inhibition led to further increase in VTN expression with no apoptotic change. siRNA-mediated inhibition of VTN resulted in reversal in G0/G1 cell cycle arrest and a marked increase in apoptosis, suggesting a role of VTN in preventing serum deprivation-induced apoptotic cell death. In addition, p65 knockdown resulted in downregulation of VTN establishing an association between NF-κβ pathway and VTN. Conclusions VTN was identified as a survival factor in providing protection from serum deprivation-induced apoptosis in MSCs.
Collapse
Affiliation(s)
- Umesh Goyal
- Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Malancha Ta
- Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India.
| |
Collapse
|
6
|
Benachour H, Leroy-Dudal J, Agniel R, Wilson J, Briand M, Carreiras F, Gallet O. Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn. J Mol Recognit 2017; 31:e2690. [PMID: 29205553 DOI: 10.1002/jmr.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022]
Abstract
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.
Collapse
Affiliation(s)
- H Benachour
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - R Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Wilson
- RayBiotech, Inc., Norcross, GA, USA
| | - M Briand
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA axis "Biology and Innovative Therapeutics for Ovarian Cancers"), Caen, France.,UNICANCER, Comprehensive Cancer Center François Baclesse, CRB Biological Resources Centre « OvaRessources », Caen, France
| | - F Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - O Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| |
Collapse
|
7
|
BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. Br J Cancer 2017; 118:233-247. [PMID: 29123267 PMCID: PMC5785741 DOI: 10.1038/bjc.2017.385] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Bactericidal/Permeability-increasing-fold-containing family B member 1 (BPIFB1, previously termed LPLUNC1) is highly expressed in the nasopharynx, significantly downregulated in nasopharyngeal carcinoma (NPC), and associated with prognosis in NPC patients. Because metastasis represents the primary cause of NPC-related death, we explored the role of BPIFB1 in NPC migration and invasion. Methods: The role of BPIFB1 in NPC metastasis was investigated in vitro and in vivo. A co-immunoprecipitation assay coupled with mass spectrometry was used to identify BPIFB1-binding proteins. Additionally, western blotting, immunofluorescence, and immunohistochemistry allowed assessment of the molecular mechanisms associated with BPIFB1-specific metastatic inhibition via vitronectin (VTN) and vimentin (VIM) interactions. Results: Our results showed that BPIFB1 expression markedly inhibited NPC cell migration, invasion, and lung-metastatic abilities. Additionally, identification of two BPIFB1-interacting proteins, VTN and VIM, showed that BPIFB1 reduced VTN expression and the formation of a VTN-integrin αV complex in NPC cells, leading to inhibition of the FAK/Src/ERK signalling pathway. Moreover, BPIFB1 attenuated NPC cell migration and invasion by inhibiting VTN- or VIM-induced epithelial–mesenchymal transition. Conclusions: This study represents the first demonstration of BPIFB1 function in NPC migration, invasion, and lung metastasis. Our findings indicate that re-expression of BPIFB1 might represent a useful strategy for preventing and treating NPC.
Collapse
|
8
|
Martí-Pàmies I, Cañes L, Alonso J, Rodríguez C, Martínez-González J. The nuclear receptor NOR-1/NR4A3 regulates the multifunctional glycoprotein vitronectin in human vascular smooth muscle cells. FASEB J 2017; 31:4588-4599. [PMID: 28666984 DOI: 10.1096/fj.201700136rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
The nuclear receptor NOR-1 (NR4A3) has recently been involved in the regulation of extracellular matrix (ECM) proteins associated with neointimal thickening and the vascular control of hemostasis. We sought to find as-yet unidentified NOR-1 target genes in human vascular smooth muscle cells (VSMCs). An in silico analysis identified putative NOR-1 response elements in the proximal promoter region of several genes encoding for ECM proteins, including vitronectin (VTN). Lentiviral overexpression of NOR-1 strongly increased VTN mRNA and protein levels, whereas NOR-1 silencing significantly reduced VTN expression. Deletion and site-directed mutagenesis studies, as well as EMSA and chromatin immunoprecipitation, identified the NBRE(-202/-195) site in the VTN promoter as an essential element for NOR-1 responsiveness. Furthermore, NOR-1 and VTN colocalized in VSMCs in human atherosclerotic lesions. VTN levels were increased in cell supernatants from VSMCs that overexpress NOR-1. Cell supernatants from VSMCs overexpressing NOR-1 induced cell migration to a greater extent than supernatants from control cells, and this effect was attenuated when cell supernatants were preincubated with anti-VTN blocking antibodies or VTN was silenced in supernatant-generating cells. These results indicate that VTN is a target of NOR-1 and suggest that this multifunctional glycoprotein may participate in vascular responses mediated by this nuclear receptor.-Martí-Pàmies, I., Cañes, L., Alonso, J., Rodríguez, C., Martínez-González, J. The nuclear receptor NOR-1/NR4A3 regulates the multifunctional glycoprotein vitronectin in human vascular smooth muscle cells.
Collapse
Affiliation(s)
- Ingrid Martí-Pàmies
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Sant Pau Biomedical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Sant Pau Biomedical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain.,Institut Català de Ciències Cardiovasculars (ICCC), Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Sant Pau Biomedical Research Institute, Barcelona, Spain; .,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
9
|
Li B, Liu W, Zhuang M, Li N, Wu S, Pan S, Hua J. Overexpression of CD61 promotes hUC-MSC differentiation into male germ-like cells. Cell Prolif 2016; 49:36-47. [PMID: 26840189 PMCID: PMC6496844 DOI: 10.1111/cpr.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Previous studies have shown that germ-like cells can be induced from human umbilical cord mesenchymal stem cell (hUC-MSCs) in vitro. However, induction efficiency was low and a stable system had not been built. CD61, also called integrin-β3, plays a significant role in cell differentiation, in that CD61-positive-cell-derived pluripotent stem cells easily differentiate into primordial germ-like cells (PGC). Here, we have explored whether overexpression of CD61 would promote hUC-MSC differentiation into PGC and male germ-like cells. MATERIALS AND METHODS hUC-MSCs were cultured and transduced using pCD61-CAGG-TRIP-pur (oCD61) and pTRIP-CAGG plasmid (Control), and hUC-MSCs overexpressed CD61 were induced by bone morphogenetic protein 4 (BMP4, 12.5 ng/ml), to differentiate into PGC and male germ cells. Quantitative real-time PCR (RT-qPCR), western blotting and immunofluorescence staining were used to examine PGC- and germ cell-specific markers. RESULTS High expression levels of PGC-specific markers were detected in oCD61 hUC-MSCs compared to controls. After BMP4 induction, expression levels of male germ cell markers such as Acrosin (ACR), Prm1 and meiotic markers including Stra8, Scp3 in oCD61 were significantly higher than those of the Control group. CONCLUSIONS Under induction of BMP4, CD61-overexpressing hUC-MSCs, which had turned into PGC-like cells, could be further differentiated into male germ-like cells. Thus, a simple and efficient approach to study male germ cell development by using hUC-MSCs has been established.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weishuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling, Shaanxi, 712100, China
| | - Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Siyu Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaohui Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins. Clin Exp Metastasis 2014; 31:675-88. [PMID: 24946950 DOI: 10.1007/s10585-014-9658-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.
Collapse
|
11
|
Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA. Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Front Endocrinol (Lausanne) 2014; 5:240. [PMID: 25628605 PMCID: PMC4290672 DOI: 10.3389/fendo.2014.00240] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3'-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- *Correspondence: Paul J. Davis, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA e-mail:
| | | | | | - John T. Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | | | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Osnat Ashur-Fabian
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- Department of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
12
|
Davis PJ, Lin HY, Tang HY, Davis FB, Mousa SA. Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 2013; 23:1503-9. [PMID: 24011085 DOI: 10.1089/thy.2013.0280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At thyroid hormone response elements on specific genes, complexes of nuclear thyroid hormone receptors (TRs) and 3,5,3'-triiodo-L-thyronine (T(3)), coactivator or corepressor nucleoproteins, and histone acetylases or deacetylases mediate genomic effects of the hormone. Nongenomic effects of the hormone are those whose initiation does not primarily depend upon formation of the TR-T(3) complex. Among the nongenomic effects of thyroid hormone are a set of actions initiated at a cell surface receptor on integrin αvβ3 that are relevant to a) intracellular trafficking of proteins, including TRβ1, b) serine phosphorylation and acetylation of this nuclear receptor, c) assembly within the nucleus of complexes of coactivators and corepressor, and d) transcription of specific genes, including that for TRβ1. These actions initiated at αvβ3 are reviewed here and appear to be adjunctive to the genomic actions of the TR-T(3) complex.
Collapse
Affiliation(s)
- Paul J Davis
- 1 Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Albany, New York
| | | | | | | | | |
Collapse
|
13
|
Carduner L, Picot CR, Leroy-Dudal J, Blay L, Kellouche S, Carreiras F. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res 2013; 320:329-42. [PMID: 24291221 DOI: 10.1016/j.yexcr.2013.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers.
Collapse
Affiliation(s)
- Ludovic Carduner
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Cédric R Picot
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France.
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Lyvia Blay
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| |
Collapse
|
14
|
Carduner L, Agniel R, Kellouche S, Picot CR, Blanc-Fournier C, Leroy-Dudal J, Carreiras F. Ovarian cancer ascites-derived vitronectin and fibronectin: combined purification, molecular features and effects on cell response. Biochim Biophys Acta Gen Subj 2013; 1830:4885-97. [PMID: 23811340 DOI: 10.1016/j.bbagen.2013.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intra-abdominal ascites is a complication of ovarian cancers and constitutes a permissive microenvironment for metastasis. Since fibronectin and vitronectin are key actors in ovarian cancer progression, we investigated their occurrence and molecular characteristics in various ascites fluids and the influence of these ascites-derived proteins on cell behavior. METHODS Fibronectin and vitronectin were investigated by immunoblotting within various ascites fluids. A combined affinity-based protocol was developed to purify both proteins from the same sample. Each purified protein was characterized with regard to its molecular features (molecular mass of isoforms, tryptophan intramolecular environment, hydrodynamic radii), and its influence on cell adhesion. RESULTS Fibronectin and vitronectin were found in all tested ascites. Several milligrams of purified proteins were obtained from ascites of varying initial volumes. Molecular mass isoforms and conformational lability of proteins differed according to the ascites of origin. When incorporated into the cancer cell environment, ascites-derived fibronectin and vitronectin supported cell adhesion and migration with various degrees of efficiency, and induced the recruitment of integrins into focal contacts. CONCLUSIONS To our knowledge, this is the first combined purification of two extracellular matrix proteins from a single pathological sample containing a great variety of bioactive molecules. This study highlights that ascites-derived fibronectin and vitronectin exhibit different properties depending on the ascites. GENERAL SIGNIFICANCE Investigating the relationships between the molecular properties of ascites components and ovarian cancer cell phenotype according to the ascites may be critical for a better understanding of the recurrence of this lethal disease and for further biomarker identification.
Collapse
Affiliation(s)
- Ludovic Carduner
- Institut des Matériaux, Université de Cergy-Pontoise, Cergy-Pontoise Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Lu Z, Bast RC. The tumor suppressor gene ARHI (DIRAS3) inhibits ovarian cancer cell migration through multiple mechanisms. Cell Adh Migr 2013; 7:232-6. [PMID: 23357870 DOI: 10.4161/cam.23648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ARHI is an imprinted tumor suppressor gene that is downregulated in > 60% of ovarian cancers, associated with decreased progression-free survival. ARHI encodes a 26 kDa GTPase with homology to Ras. Re-expression of ARHI inhibits ovarian cancer growth, initiates autophagy and induces tumor dormancy. Recent studies have demonstrated that ARHI also plays a particularly important role in ovarian cancer cell migration. Re-expression of ARHI decreases motility of IL-6- and EGF-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI inhibits cell migration by binding and sequestering STAT3 in the cytoplasm, and preventing STAT3 translocation to the nucleus and localization in focal adhesion complexes. Re-expression of ARHI inhibits FAK (Y397) phosphorylation, disrupts focal adhesions and blocks FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI disrupts formation of actin stress fibers in a FAK- and RhoA-dependent manner. Recent studies indicate that re-expression of ARHI inhibits expression of β-1 integrin which may also contribute to inhibition of migration, adhesion and invasion.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
16
|
Deng B, Zhang S, Miao Y, Han Z, Zhang X, Wen F, Zhang Y. Adrenomedullin expression in epithelial ovarian cancers and promotes HO8910 cell migration associated with upregulating integrin α5β1 and phosphorylating FAK and paxillin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:19. [PMID: 22400488 PMCID: PMC3337271 DOI: 10.1186/1756-9966-31-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Background Epithelial ovarian cancer (EOC) is one of the leading causes of cancer deaths in women worldwide. Adrenomedullin (AM) is a multifunctional peptide which presents in various kinds of tumors. Methods In this study, we characterized the expression and function of AM in epithelial ovarian cancer using immunohistochemistry staining. Exogenous AM and small interfering RNA (siRNA) specific for AM receptor CRLR were treated to EOC cell line HO8910. Wound healing assay and flow cytometry were used to measure the migration ability and expression of integrin α5 of HO8910 cells after above treatments. Western blot was used to examine the phosphorylation of FAK and paxillin. Results We found that patients with high AM expression showed a higher incidence of metastasis, larger residual size of tumors after cytoreduction and shorter disease-free and overall survival time. Exogenous AM induced ovarian cancer cell migration in time- and dose- dependent manners. AM upregulated the expression of integrin α5 and phosphorylation of FAK, paxillin as well. Conclusions Our results suggested that AM contributed to the progression of EOC and had additional roles in EOC cell migration by activating the integrin α5β1 signaling pathway. Therefore, we presumed that AM could be a potential molecular therapeutic target for ovarian carcinoma.
Collapse
Affiliation(s)
- Boya Deng
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Cacciatore M, Guarnotta C, Calvaruso M, Sangaletti S, Florena AM, Franco V, Colombo MP, Tripodo C. Microenvironment-centred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012:138079. [PMID: 22400028 PMCID: PMC3287037 DOI: 10.1155/2012/138079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 12/13/2022] Open
Abstract
Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Matilde Cacciatore
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Carla Guarnotta
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Marco Calvaruso
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Sabina Sangaletti
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Ada Maria Florena
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Vito Franco
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Mario Paolo Colombo
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Claudio Tripodo
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| |
Collapse
|