1
|
Yang T, Zhou B, Shan Z, Hu L. Type 2 diabetes aggravates periodontitis-induced pathological changes in the dental pulp. Oral Dis 2024; 30:3250-3260. [PMID: 37837239 DOI: 10.1111/odi.14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVES The inner mechanism of how diabetes affects dental pulp of patients with periodontitis has seldom been reported. We collected clinical samples and explored the influence of diabetes and periodontitis on the pathological change of dental pulp. METHODS Dental pulp from healthy individuals and patients with periodontitis with or without diabetes were collected based on strict inclusion and exclusion criteria. Dental pulp was morphologically observed; advanced glycation end products (AGEs) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX1) were examined. Oxidative stress (OS), inflammatory indices, and apoptotic levels were assessed. RESULTS Morphologically, fibrous structure in the dental pulp of patients with diabetic periodontitis (DP) group was sparse and disordered, and the blood vessel wall was thickened. Diabetes related indexes as AGEs and LOX1 were upregulated. Superoxide dismutase 2 expression was decreased, and OS level was increased. Matrix metalloproteinase 3 and other relevant proinflammatory cytokines levels were increased. The elevated OS and inflammation contributed to upregulation of apoptotic levels in DP group. CONCLUSIONS Diabetes aggravates the pathological changes in the dental pulp of periodontitis patients possibly due to upregulated AGEs and LOX1. Our results highlight the importance of early oral intervention in patients with DP.
Collapse
Affiliation(s)
- Tao Yang
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Bowen Zhou
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Liang Hu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022; 14:e27946. [PMID: 36120221 PMCID: PMC9464706 DOI: 10.7759/cureus.27946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary dentin, as well as the liberation of physiologically active molecules and the control of developmental processes. Although efforts to protect dentin have mostly centered on preventing these proteases from doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated. The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of reparative and reactionary dentin, and the established functions of MMPs in dentin production are given particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as leading applicants for dentin regeneration.
Collapse
|
3
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
4
|
Rui YF, Chen MH, Li YJ, Xiao LF, Geng P, Wang P, Xu ZY, Zhang XP, Dai GC. CTGF Attenuates Tendon-Derived Stem/Progenitor Cell Aging. Stem Cells Int 2019; 2019:6257537. [PMID: 31827530 PMCID: PMC6881574 DOI: 10.1155/2019/6257537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023] Open
Abstract
Aged tendon-derived stem/progenitor cells (TSPCs) lead to age-related tendon disorders and impair tendon healing. However, the underlying molecular mechanisms of TSPC aging remain largely unknown. Here, we investigated the role of connective tissue growth factor (CTGF) in TSPC aging. CTGF protein and mRNA levels were markedly decreased in the aged TSPCs. Moreover, recombinant CTGF attenuates TSPC aging and restores the age-associated reduction of self-renewal and differentiation of TSPCs. In addition, cell cycle distribution of aged TSPCs was arrested in the G1/S phase while recombinant CTGF treatment promoted G1/S transition. Recombinant CTGF also rescued decreased levels of cyclin D1 and CDK4 and reduced p27kip1 expression in aged TSPCs. Our results demonstrated that CTGF plays a vital role in TSPC aging and might be a potential target for molecular therapy of age-related tendon disorders.
Collapse
Affiliation(s)
- Yun-feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, Zhejiang 310000, China
| | - Min-hao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, Zhejiang 310000, China
| | - Ying-juan Li
- China Orthopedic Regenerative Medicine Group, Hangzhou, Zhejiang 310000, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Long-fei Xiao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Peng Geng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Pei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Zheng-yuan Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Xuan-pu Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Guang-chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute, Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
5
|
Li S, Pan Y. Immunolocalization of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3, and phosphorylated-ERK1/2 during mouse incisor development. Connect Tissue Res 2019; 60:265-273. [PMID: 29991285 DOI: 10.1080/03008207.2018.1499730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD and mitogen-activated protein kinase (MAPK) signaling pathways. However, little is known about the localization of CTGF and TGF-β1 signaling cascades during incisor development. Therefore, we aimed to investigate the distribution pattern of TGF-β1, CTGF, phosphorylated-SMAD2/3 (p-SMAD2/3), and phosphorylated-ERK1/2 (p-ERK1/2) in the developing mouse incisors. MATERIALS AND METHODS ICR mice heads of embryonic (E) day 16.5, postnatal (PN) day 0.5 and PN3.5 were processed for immunohistochemistry. RESULTS From E16.5 to PN3.5, moderate to strong staining for TGF-β1 and CTGF was localized in stellate reticulum (SR), transit amplifying (TA) cells, outer enamel epithelium (OEE), preameloblasts (PA), preodontoblasts (PO), and dental papilla (DP). p-SMAD2/3 was weakly positive in SR and OEE at E16.5 and PN0.5 but was strongly positive in SR and OEE at PN3.5. Particularly, in the stem cell niche, p-SMAD2/3 was only localized in SR cells adjacent to OEE. There was no staining for p-SMAD2/3 in TA cells, PA and PO, although weak to moderate staining for p-SMAD2/3 was seen in DP. From E16.5 to PN3.5, p-ERK1/2 was negative in TA cells, OEE, PA and PO, whereas weak to moderate staining for p-ERK1/2 was observed in SR. DP was moderately stained for p-ERK1/2. CONCLUSIONS TGF-β1 and CTGF show a similar expression, while p-SMAD2/3 and p-ERK1/2 exhibit differential distribution pattern, which indicates that CTGF and TGF-β1 signaling cascades might play a regulatory role in incisor development.
Collapse
Affiliation(s)
- Shubo Li
- a The Institute of Stomatology, School and Hospital of Stomatology , Wenzhou Medical University , Wenzhou , Zhejiang Province , People's Republic of China
| | - Yihuai Pan
- a The Institute of Stomatology, School and Hospital of Stomatology , Wenzhou Medical University , Wenzhou , Zhejiang Province , People's Republic of China.,b Department of Endodontics, School and Hospital of Stomatology , Wenzhou Medical University , Wenzhou , Zhejiang Province , People's Republic of China
| |
Collapse
|
6
|
Ding X, Zhang R, Zhang S, Zhuang H, Xu G. Differential expression of connective tissue growth factor and hepatocyte growth factor in the vitreous of patients with high myopia versus vitreomacular interface disease. BMC Ophthalmol 2019; 19:25. [PMID: 30665391 PMCID: PMC6341692 DOI: 10.1186/s12886-019-1041-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Background To determine the levels of connective tissue growth factor (CTGF) and hepatocyte growth factor (HGF) in the vitreous of patients with high myopia, in comparison with those with a vitreomacular interface disease (VMID). Methods Patients with either high myopia (high myopia group) or a VMID (VMID group) were included in this study. Each of the two groups were further subdivided into two subgroups: group A (high myopia with macular hole), group B (high myopia with macular retinoschisis), group C (idiopathic macular hole), and group D (idiopathic epiretinal membrane). Vitreal specimens were collected during vitrectomy, and enzyme-linked immunosorbent assay was used to quantitatively measure the CTGF and HGF levels in the vitreous. Results The average axial length was markedly longer in the high myopia group than in the VMID group. The vitreal CTGF level was significantly higher in the high myopia group than in the VMID group. Subgroup analysis revealed significantly higher vitreal CTGF in group A than in the other three subgroups. The vitreal HGF level was not significantly different between the high myopia and VMID groups, but was significantly higher in group D than in group C in the subgroup analysis. Correlation analysis showed that the vitreal CTGF level was positively correlated with the axial length. Conclusions The vitreal CTGF level is elevated in highly myopic eyes and may be related to the pathogenesis of high myopia, whereas increased expression of HGF may be involved in the development of idiopathic epiretinal membrane.
Collapse
Affiliation(s)
- Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai and Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai and Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Shujie Zhang
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai and Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Hong Zhuang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China. .,Key Laboratory of Visual Impairment and Restoration of Shanghai and Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China.
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai and Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| |
Collapse
|
7
|
New Functions of Classical Compounds against Orofacial Inflammatory Lesions. MEDICINES 2018; 5:medicines5040118. [PMID: 30388792 PMCID: PMC6313344 DOI: 10.3390/medicines5040118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023]
Abstract
Anti-inflammatory agents have been widely used to ameliorate severe inflammatory symptoms of a number of diseases, and such therapeutics are particularly useful for diseases with intolerable pain without significant mortality. A typical example of this is a disease known as stomatitis; although stomatitis itself is not a life-threatening disease, it severely impairs the individual’s quality of life, and thus a standard therapeutic strategy for it has already been established. The topical application of a bioactive agent is quite easy, and a strong anti-inflammatory agent can be used without significant adverse effects. In contrast, natural products with relatively mild bioactivity are used for systemic intervention. However, new aspects of classical drugs used in these established therapeutic methods have recently been discovered, which is expanding the utility of these compounds to other oral diseases such as osteoarthritis of temporomandibular joints (TMJ-OA). In this review article, after summarizing the general concept and pathobiology of stomatitis, its established therapeutics are explained. Thereafter, recent advances in the research into related compounds, which is uncovering new biological functions of the agents used therein, are introduced. Indeed, regenerative therapeutics for TMJ-OA may be developed with the classical compounds currently being used.
Collapse
|
8
|
Dentinogenic effects of extracted dentin matrix components digested with matrix metalloproteinases. Sci Rep 2018; 8:10690. [PMID: 30013085 PMCID: PMC6048071 DOI: 10.1038/s41598-018-29112-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2018] [Indexed: 01/28/2023] Open
Abstract
Dentin is primarily composed of hydroxyapatite crystals within a rich organic matrix. The organic matrix comprises collagenous structural components, within which a variety of bioactive molecules are sequestered. During caries progression, dentin is degraded by acids and enzymes derived from various sources, which can release bioactive molecules with potential reparative activity towards the dentin-pulp complex. While these molecules’ repair activities in other tissues are already known, their biological effects are unclear in relation to degradation events during disease in the dentin-pulp complex. This study was undertaken to investigate the effects of dentin matrix components (DMCs) that are partially digested by matrix metalloproteinases (MMPs) in vitro and in vivo during wound healing of the dentin-pulp complex. DMCs were initially isolated from healthy dentin and treated with recombinant MMPs. Subsequently, their effects on the behaviour of primary pulp cells were investigated in vitro and in vivo. Digested DMCs modulated a range of pulp cell functions in vitro. In addition, DMCs partially digested with MMP-20 stimulated tertiary dentin formation in vivo, which exhibited a more regular tubular structure than that induced by treatment with other MMPs. Our results indicate that MMP-20 may be especially effective in stimulating wound healing of the dentin-pulp complex.
Collapse
|
9
|
The in vitro effects of CCN2 on odontoblast-like cells. Arch Oral Biol 2018; 94:54-61. [PMID: 30168419 DOI: 10.1016/j.archoralbio.2018.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the in vitro effects of CCN2 on odontoblast-like cells proliferation and differentiation. DESIGN MDPC-23 cells were cultured in DMEM supplemented with 5% FBS. CCN2 was either added to culture media or coated onto culture polystyrene, addition or coating of dH2O was served as control. In the addition group, CCN2 (100 ng/mL) was added into culture media. In the coating group, CCN2 at the concentration of 1000 ng/mL was employed. Cell proliferation was performed using CCK-8 assay. Cell differentiation and mineralization were analyzed by ALPase activity assay, real time RT-PCR and alizarin red staining. One-way ANOVA with post-hoc tukey HSD test was used for statistical analysis. RESULTS MDPC-23 cells exhibited robust proliferative activity upon exposure to either soluble or immobilized CCN2. ALP activity of cells cultured on CCN2-modified surface was continuously strengthened from day six (0.831 ± 0.024 units/μg protein versus 0.563 ± 0.006 units/μg protein of control) till day eight (1.035 ± 0.139 units/μg protein versus 0.704 ± 0.061 units/μg protein of control). Gene expression of BSP, OCN and OPN were promoted by soluble CCN2 after 48 h exposure. Moreover, gene expression of BSP, OCN, OPN, ALP, COL1 A1, Runx-2, DSPP and DMP-1 was significantly enhanced by immobilized CCN2. Finally, mineralization of MDPC-23 cells was accelerated by both soluble and immobilized CCN2 to different extent. CONCLUSIONS The findings indicate that CCN2 promoted proliferation, odontogenic gene expression and mineralization of MDPC-23 cells. It is proposed that CCN2 may be a promising adjunctive formula for dentin regeneration.
Collapse
|
10
|
Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium. Ann Anat 2017; 216:52-59. [PMID: 29175126 DOI: 10.1016/j.aanat.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD pathway. However, there is no literature showing the expression of TGF-β1-SMAD2/3-CTGF signaling pathway during postnatal tooth development and the formation of junctional epithelium (JE). Hence, we aimed to analyze the localization of TGF-β1, CTGF and phosphorylated SMAD2/3 (p-SMAD2/3) in the developing postnatal rat molars. Wistar rats were killed at postnatal (PN) 0.5, 3.5, 7, 14 and 21days and the upper jaws were processed for immunohistochemistry. At PN0.5 and PN3.5, weak staining for TGF-β1 and CTGF was evident in preameloblasts (PA), while moderate to strong staining was seen in odontoblasts (OD), dental papilla (DPL), secretary ameloblasts (SA), preodontoblasts (PO) and polarized odontoblasts (PoO). There was no staining for p-SMAD2/3 in PA, SA, PO and PoO, although strong staining was localized in DPL. OD was initially moderately positive and then negative for p-SMAD2/3. At PN7, intense staining for TGF-β1 and CTGF was observed in SA, OD, dental pulp (DP) and predentin respectively. p-SMAD2/3 was strongly expressed in DP and moderately expressed in SA and OD. At PN14 and PN21, both reduced enamel epithelium (REE) and JE showed a strong reaction for TGF-β1 and CTGF. p-SMAD2/3 was intensely and weakly expressed in REE and JE respectively. These data demonstrate that the expression of CTGF, TGF-β1 and p-SNAD2/3 is tissue-specific and stage-specific, and indicate a regulatory role for a TGF-β1-SMAD2/3-CTGF signaling pathway in amelogenesis, dentinogenesis and formation of JE.
Collapse
Affiliation(s)
- Shubo Li
- The Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yihuai Pan
- The Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
11
|
Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development. J Mol Histol 2017; 48:347-355. [PMID: 28825193 DOI: 10.1007/s10735-017-9733-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD and mitogen-activated protein kinase (MAPK) signaling pathways. The fine modulation of TGF-β1 signaling is very important to the process of tooth development. However, little is known about the localization of CTGF, MAPK and SMAD in the context of TGF-β1 signaling during odontogenesis. Hence, we aimed to investigate the expression of TGF-β1, CTGF, phosphorylated-SMAD2/3 (p-SMAD2/3) and phosphorylated-ERK1/2 (p-ERK1/2). ICR mice heads of embryonic (E) day 13.5, E14.5, E16.5, postnatal (PN) day 0.5 and PN3.5 were processed for immunohistochemistry. Results revealed that at E13.5, TGF-β1 and CTGF were strongly expressed in dental epithelium (DE) and dental mesenchyme (DM), while p-SMAD2/3 was intensely expressed in the internal side of DE. p-ERK1/2 was not present in DE or DM. At E14.5 and E16.5, strong staining for TGF-β1 and CTGF was detected in enamel knot (EK) and dental papilla (DPL). DPL was intensely stained for p-ERK1/2 but negatively stained for p-SMAD2/3. There was no staining for p-SMAD2/3 and p-ERK1/2 in EK. At PN0.5 and PN3.5, moderate to intense staining for TGF-β1 and CTGF was evident in preameloblasts (PA), secretary ameloblasts (SA) and dental pulp (DP). p-SMAD2/3 was strongly expressed in SA and DP but sparsely localized in PA. p-ERK1/2 was intensely expressed in DP, although negative staining was observed in PA and SA. These data demonstrate that TGF-β1 and CTGF show an identical expression pattern, while p-SMAD2/3 and p-ERK1/2 exhibit differential expression, and indicate that p-SMAD2/3 and p-ERK1/2 might play a regulatory role in TGF-β1 induced CTGF expression during tooth development.
Collapse
|
12
|
Hayama T, Kamio N, Okabe T, Muromachi K, Matsushima K. Kallikrein Promotes Inflammation in Human Dental Pulp Cells Via Protease-Activated Receptor-1. J Cell Biochem 2016; 117:1522-8. [PMID: 26566265 DOI: 10.1002/jcb.25437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
Plasma kallikrein (KLKB1), a serine protease, cleaves high-molecular weight kininogen to produce bradykinin, a potent vasodilator and pro-inflammatory peptide. In addition, KLKB1 activates plasminogen and other leukocyte and blood coagulation factors and processes pro-enkephalin, prorenin, and C3. KLKB1 has also been shown to cleave protease-activated receptors in vascular smooth muscle cells to regulate the expression of epidermal growth factor receptor. In this study, we investigated KLKB1-dependent inflammation and activation of protease-activated receptor-1 in human dental pulp cells. These cells responded to KLKB1 stimulation by increasing intracellular Ca(2+) , upregulating cyclooxygenase-2, and secreting prostaglandin E2 . Remarkably, SCH79797, an antagonist of protease-activated receptor-1, blocked these effects. Thus, these data indicate that KLKB1 induces inflammatory reactions in human dental tissues via protease-activated receptor 1. J. Cell. Biochem. 117: 1522-1528, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomomi Hayama
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Naoto Kamio
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Tatsu Okabe
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| | - Koichiro Muromachi
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, 238-8580, Japan
| | - Kiyoshi Matsushima
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
13
|
Oral biosciences: The annual review 2015. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Jia Q, Dong Q, Qin L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 2016; 7:1203-1214. [PMID: 26497214 PMCID: PMC4811454 DOI: 10.18632/oncotarget.6209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from an underlying chronic liver inflammatory disease, such as chronic hepatitis B or C virus infections, and the general prognosis of patients with HCC still remains extremely dismal because of the high frequency of HCC metastases. Throughout the process of tumor metastasis, tumor cells constantly communicate with the surrounding microenvironment and improve their malignant phenotype. Therefore, there is a strong rationale for targeting the tumor microenvironment as primary treatment of HCC therapies. Recently, CCN family proteins have emerged as localized multitasking signal integrators in the inflammatory microenvironment. In this review, we summarize the current knowledge of CCN family proteins in inflammation and the tumor. We also propose that the CCN family proteins may play a central role in signaling the tumor microenvironment and regulating the metastasis of HCC.
Collapse
Affiliation(s)
- Qingan Jia
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Muromachi K, Kamio N, Matsuki-Fukushima M, Nishimura H, Tani-Ishii N, Sugiya H, Matsushima K. CCN2/CTGF expression via cellular uptake of BMP-1 is associated with reparative dentinogenesis. Oral Dis 2015; 21:778-84. [PMID: 25944709 DOI: 10.1111/odi.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE CCN family member 2/connective tissue growth factor (CCN2/CTGF) is known as an osteogenesis-related molecule and is thought to be implicated in tooth growth. Bone morphogenetic protein-1 (BMP-1) contributes to tooth development by the degradation of dentin-specific substrates as a metalloprotease. In this study, we demonstrated the correlations between CCN2/CTGF and BMP-1 in human carious teeth and the subcellular dynamics of BMP-1 in human dental pulp cells. MATERIALS AND METHODS Expression of CCN2/CTGF and BMP-1 in human carious teeth was analyzed by immunohistochemistry. BMP-1-induced CCN2/CTGF protein expression in primary cultures of human dental pulp cells was observed by immunoblotting. Intracellular dynamics of exogenously administered fluorescence-labeled BMP-1 were observed using confocal microscope. RESULTS Immunoreactivities for CCN2/CTGF and BMP-1 were increased in odontoblast-like cells and reparative dentin-subjacent dental caries. BMP-1 induced the expression of CCN2/CTGF independently of protease activity in the cells but not that of dentin sialophosphoprotein (DSPP) or dentin matrix protein-1 (DMP-1). Exogenously added BMP-1 was internalized into the cytoplasm, and the potent dynamin inhibitor dynasore clearly suppressed the BMP-1-induced CCN2/CTGF expression in the cells. CONCLUSION CCN2/CTGF and BMP-1 coexist beneath caries lesion and CCN2/CTGF expression is regulated by dynamin-related cellular uptake of BMP-1, which suggests a novel property of metalloprotease in reparative dentinogenesis.
Collapse
Affiliation(s)
- K Muromachi
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Kanagawa, Japan.,Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - N Kamio
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - M Matsuki-Fukushima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - H Nishimura
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - N Tani-Ishii
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - H Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - K Matsushima
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
16
|
Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod 2015; 41:797-803. [PMID: 25649306 PMCID: PMC5223201 DOI: 10.1016/j.joen.2014.12.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. METHODS A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. RESULTS Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. CONCLUSIONS Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
17
|
Muromachi K, Kamio N, Matsuki-Fukushima M, Narita T, Nishimura H, Tani-Ishii N, Sugiya H, Matsushima K. Metalloproteases and CCN2/CTGF in dentin–pulp complex repair. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
19
|
Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 2014; 128:181-96. [DOI: 10.1042/cs20140264] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CCN family protein 2 (CCN2), also widely known as connective tissue growth factor (CTGF), is one of the founding members of the CCN family of matricellular proteins. Extensive investigation on CCN2 over decades has revealed the novel molecular action and functional properties of this unique signalling modulator. By its interaction with multiple molecular counterparts, CCN2 yields highly diverse and context-dependent biological outcomes in a variety of microenvironments. Nowadays, CCN2 is recognized to conduct the harmonized development of relevant tissues, such as cartilage and bone, in the skeletal system, by manipulating extracellular signalling molecules involved therein by acting as a hub through a web. However, on the other hand, CCN2 occasionally plays profound roles in major human biological disorders, including fibrosis and malignancies in major organs and tissues, by modulating the actions of key molecules involved in these clinical entities. In this review, the physiological and pathological roles of this unique protein are comprehensively summarized from a molecular network-based viewpoint of CCN2 functionalities.
Collapse
|
20
|
Effect of CTGF/CCN2 on Osteo/Cementoblastic and Fibroblastic Differentiation of a Human Periodontal Ligament Stem/Progenitor Cell Line. J Cell Physiol 2014; 230:150-9. [DOI: 10.1002/jcp.24693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
|
21
|
Abstract
PURPOSE OF REVIEW Connective tissue growth factor, more recently officially known as CCN-2, is a member of the CCN family of secreted cysteine-rich modular matricellular proteins. Here, we review CCN-2 in diabetic nephropathy with focus on its regulation of extracellular matrix. RECENT FINDINGS CCN-2 is upregulated in the clinical and preclinical models of diabetic nephropathy by multiple stimuli, including elevated glucose, advanced glycation, some types of lipid, various hemodynamic factors, as well as hypoxia and oxidative stress. CCN-2 has bioactivities that suggest it may mediate diabetic nephropathy pathogenesis, especially in extracellular matrix accumulation, through both induction of new matrix and inhibition of matrix degradation. CCN-2 also has proinflammatory functions. Moreover, recent studies using antibodies or antisense technologies in animal and early phase clinical trial settings have shown that inhibition of renal CCN-2 expression or action may prevent diabetic nephropathy. Additionally, determination of renal and blood levels of CCN-2 as a marker of diabetic renal disease and its progression appears to have value. SUMMARY Recent publications implicate CCN-2 as both an evolving marker and mediator of diabetic nephropathy.
Collapse
|
22
|
Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 2012; 29:116-35. [PMID: 22901826 DOI: 10.1016/j.dental.2012.08.004] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/04/2012] [Accepted: 08/05/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. METHODS Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. RESULTS The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. SIGNIFICANCE Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future.
Collapse
|