1
|
Wu C, Xiong Y, Fu F, Zhang F, Qin F, Yuan J. The Role of Autophagy in Erectile Dysfunction. World J Mens Health 2025; 43:28-40. [PMID: 38606869 PMCID: PMC11704175 DOI: 10.5534/wjmh.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
Collapse
Affiliation(s)
- Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1. Cells 2020; 9:cells9030687. [PMID: 32168879 PMCID: PMC7140637 DOI: 10.3390/cells9030687] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.
Collapse
|
3
|
Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol Sin 2019; 40:1412-1423. [PMID: 31000770 DOI: 10.1038/s41401-019-0224-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023]
Abstract
Excessive and abnormal vessel growth plays a critical role in the pathogenesis of many diseases, such as cancer. Angiogenesis is one of the hallmarks of cancer growth, invasion, and metastasis. Discovery of novel antiangiogenic agents would provide new insights into the mechanisms of angiogenesis, as well as potential drugs for cancer treatment. In the present study, we investigated the antiangiogenic activity of a series of monocarbonyl analogs of curcumin synthesized previously in our lab. We found that curcumin analog A2 displayed the full potential to be developed as a novel antiangiogenic agent. Curcumin analog A2 at and above 20 μM dramatically inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, new microvessels sprouting from the rat aortic rings ex vivo and newly formed microvessels in chicken chorioallantoic membranes (CAMs) and Matrigel plus in vivo. We further demonstrated that curcumin analog A2 exerted its antiangiogenic activity mainly through inducing endothelial cell death via elevating NADH/NADPH oxidase-derived ROS. Curcumin analog A2 at the antiangiogenic concentrations also triggered autophagy in HUVECs, but this process is neither a pre-requisite for toxicity, leading to the cell death nor a protective response against the toxicity of curcumin analog A2. In conclusion, we demonstrate for the first time the potent antiangiogenic activity of the monocarbonyl curcumin analog A2, which could serve as a promising potential therapeutic agent for the prevention and treatment angiogenesis-related diseases, such as cancer.
Collapse
|
4
|
Sung SJ, Kim HK, Hong YK, Joe YA. Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells. Biomol Ther (Seoul) 2019; 27:117-125. [PMID: 30642153 PMCID: PMC6319545 DOI: 10.4062/biomolther.2018.222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.
Collapse
Affiliation(s)
- So Jung Sung
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun-Kyung Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong-Kil Hong
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Neuro-Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Ae Joe
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 2017; 43:1021-1028. [PMID: 27558982 DOI: 10.1111/1440-1681.12649] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
The importance of autophagy in cardiovascular physiology and cardiovascular disease is increasingly recognized; however, the precise biological effects and underlying mechanisms of autophagy in the cardiovascular system are still poorly understood. In the last few years, the effects of autophagy in endothelial cells have attracted great interests. This article provides a summary of our current knowledge on the regulatory factors, signalling mechanisms, and functional outcomes of autophagy in endothelial cells. It is suggested that in most situations, induction of an autophagic response has cytoprotective effects. The beneficial effects of autophagy in endothelial cells are likely to be context-dependent, since autophagy may also contribute to cell death under certain circumstances. In addition to regulating endothelial cell survival or death, autophagy is also involved in modulating other important functions, such as nitric oxide production, angiogenesis and haemostasis/thrombosis. The mounting data will help us draw a clear picture of the roles of autophagy in endothelial cell biology and dysfunction. Given the pivotal role of endothelial dysfunction in the pathogenesis of vascular disease, disruptions of autophagy in endothelial cells are likely to have significant contributions. This is supported by some preliminary ex vivo data indicating that compromised autophagic functions may be important in the development of endothelial dysfunctions associated with diabetes and ageing.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:613-624. [DOI: 10.1016/j.bbamcr.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
|
7
|
Chen Z, Zhang L, Yu J, Chen L, Zhou B. Identification of resveratrol derivative 3,3',4,4',5,5'-hexamethoxy- trans-stilbene as a novel pro-angiogenic small-molecule compound. Eur J Pharmacol 2016; 791:185-194. [PMID: 27590357 DOI: 10.1016/j.ejphar.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/21/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
The potential to promote neovascularization in ischemic tissues using exogenous agents is an attractive avenue for therapeutics. To identify novel pro-angiogenic small-molecule compound, we screened a series of resveratrol methylated derivatives and identified 3,3',4,4', 5,5'-hexamethoxy-trans-stilbene (3,3',4,4',5,5'-HMS) potently promotes proliferation, migration, invasion and tube formation of human umbilical vein VECs (HUVECs) in vitro. Furthermore, 3,3',4,4',5,5'-HMS accelerates neo-vessels sprouting of rat aortic rings ex vivo, and neovascularization of chick chorioallantoic membrane (CAM) and mouse matrigel plugs in vivo. Microarray analyses show that the level of early growth response 1 (EGR-1), an inducible pro-angiogenic gene regulatory factor, was upregulated. The upregulation of EGR-1 was confirmed by semiquantitative RT-PCR, quantitative real-time PCR and western blotting analyses. In addition, the levels of several pro-angiogenic factors including transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), nitric oxide (NO), and the activity of endothelial NO synthase (eNOS) were elevated in 3,3',4,4',5,5'-HMS-treated HUVECs. Inhibition of NO synthase by l-NAME blocked the pro-angiogenic effects of 3,3',4,4',5,5'-HMS. Our research shows that 3,3',4,4',5,5'-HMS dramatically promoted angiogenesis in vitro, ex vivo and in vivo, which might represent a novel potential agent for the development of therapeutic drugs to treat ischemic diseases.
Collapse
Affiliation(s)
- ZhiQiang Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - JingTing Yu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - LiangKe Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Falomir E, Lucas R, Peñalver P, Martí-Centelles R, Dupont A, Zafra-Gómez A, Carda M, Morales JC. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites. Chembiochem 2016; 17:1343-8. [DOI: 10.1002/cbic.201600084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Eva Falomir
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Ricardo Lucas
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina “López Neyra”; CSIC; Parque Tecnológico Ciencias de la Salud; Avenida del Conocimiento, 17 18016 Armilla Granada Spain
| | - Rosa Martí-Centelles
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Alexia Dupont
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry; Faculty of Sciences; University of Granada; C/ Severo Ochoa, s/n 18001 Granada Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry; University Jaume I; Avda Sos Baynat, sn 12071 Castellón Spain
| | - Juan C. Morales
- Department of Bioorganic Chemistry; Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla; Avda Americo Vespucio, 49 41092 Sevilla Spain
- Instituto de Parasitología y Biomedicina “López Neyra”; CSIC; Parque Tecnológico Ciencias de la Salud; Avenida del Conocimiento, 17 18016 Armilla Granada Spain
| |
Collapse
|
9
|
Nikhil K, Sharan S, Wishard R, Palla SR, Krishna Peddinti R, Roy P. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs. Steroids 2016; 108:17-30. [PMID: 26850466 DOI: 10.1016/j.steroids.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 01/09/2016] [Accepted: 01/29/2016] [Indexed: 11/23/2022]
Abstract
Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases.
Collapse
Affiliation(s)
- Kumar Nikhil
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Shruti Sharan
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Rohan Wishard
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Srinivasa Rao Palla
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
10
|
Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, Guo Y, Zhou G. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:377-87. [DOI: 10.1016/j.bbamcr.2014.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
11
|
Ng SY, Cardullo N, Yeo SCM, Spatafora C, Tringali C, Ong PS, Lin HS. Quantification of the resveratrol analogs trans-2,3-dimethoxy-stilbene and trans-3,4-dimethoxystilbene in rat plasma: application to pre-clinical pharmacokinetic studies. Molecules 2014; 19:9577-90. [PMID: 25004068 PMCID: PMC6271088 DOI: 10.3390/molecules19079577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 01/10/2023] Open
Abstract
trans-2,3-Dimethoxystilbene (2,3-DMS) and trans-3,4-dimethoxystilbene (3,4-DMS) are two synthetic resveratrol (trans-3,5,4'-trihydroxystilbene) analogs. In this study, a simple HPLC method was developed and validated to determine 2,3-DMS and 3,4-DMS in rat plasma. Chromatographic separation was obtained with a reversed-phase HPLC column through a 12.5-min gradient delivery of a mixture of acetonitrile and water at the flow rate of 1.5 mL/min at 50 °C. The lower limit of quantification was 10 ng/mL. After successful validation, the pharmacokinetic profiles of 2,3-DMS and 3,4-DMS were subsequently studied in Sprague-Dawley rats. Upon single intravenous administration (4 mg/kg), 2,3-DMS had a medium volume of distribution of the central compartment (Vc = 2.71 ± 0.51 L/kg), quite rapid clearance (Cl = 52.0 ± 7.0 mL/min/kg), moderate mean transit time (MTT0→last = 131.0 ± 4.5 min) but a fairly long terminal elimination half-life (t1/2λZ = 288.9 ± 92.9 min). Interestingly, 3,4-DMS displayed a pharmacokinetic profile apparently distinct from 2,3-DMS and it had more extensive distribution (Vc = 5.58 ± 1.73 L/kg), faster clearance (Cl = 143.4 ± 40.5 mL/min/kg) and shorter residence (MTT0→last = 61.4 ± 27.1 min). Following single oral administration (10 mg/kg), 2,3-DMS had low and erratic plasma exposure (Cmax = 37.5 ± 23.7 ng/mL) and poor oral bioavailability (2.22% ± 2.13%) while the oral bioavailability of 3,4-DMS was even poorer than 2,3-DMS. Clearly, the location of the methoxy groups had a significant impact on the pharmacokinetics of resveratrol analogs. This study provided useful information for the design of resveratrol derivatives in future study.
Collapse
Affiliation(s)
- Shermain Yali Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Samuel Chao Ming Yeo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Pei-Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| |
Collapse
|
12
|
Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 2013; 5:1009-21. [PMID: 23734684 DOI: 10.4155/fmc.13.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.
Collapse
|
13
|
Synthesis and biological activity of new resveratrol derivative and molecular docking: dynamics studies on NFkB. Appl Biochem Biotechnol 2013; 171:1639-57. [PMID: 23990478 DOI: 10.1007/s12010-013-0448-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/12/2013] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVS) is a naturally occurring antioxidant, able to display an array of biological activities. In the present investigation, a new derivative of RVS, RVS(a), was synthesized, and its biological activity was determined on U937 cells. It was observed that RVS(a) showed pronounced activity on U937 cells than RVS. RVS(a) is able to induce apoptosis in tumor cell lines through subsequent DNA fragmentation. From the EMSA results, it was evident that RVS(a) was able to suppress the activity of NFkB by interfering its DNA binding ability. Furthermore, the molecular interaction analysis (docking and dynamics) stated that RVS(a) has strong association with the IkB-alpha site of NFkB compared with RVS; this binding nature of RVS(a) might be prevent the NFkB binding ability with DNA. The present findings represent the potential activity of propynyl RVS on U937 cells and signifying it as a one of putative chemotherapeutic drugs against cancer.
Collapse
|
14
|
Kim I, He YY. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front Oncol 2013; 3:175. [PMID: 23875169 PMCID: PMC3711071 DOI: 10.3389/fonc.2013.00175] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/21/2013] [Indexed: 12/25/2022] Open
Abstract
Despite the advances in biomedical research and clinical applications, cancer remains a leading cause of death worldwide. Given the limitations of conventional chemotherapeutics, including serious toxicities and reduced quality of life for patients, the development of safe and efficacious alternatives with known mechanism of action is much needed. Prevention of cancer through dietary intervention may hold promise and has been investigated extensively in the recent years. AMP-activated protein kinase (AMPK) is an energy sensor that plays a key role in the regulation of protein and lipid metabolism in response to changes in fuel availability. When activated, AMPK promotes energy-producing catabolic pathways while inhibiting anabolic pathways, such as cell growth and proliferation – thereby antagonizing carcinogenesis. Other anti-cancer effects of AMPK may include promoting autophagy and DNA repair upon UVB damage. In the last decade, interest in AMPK has grown extensively as it emerged as an attractive target molecule for cancer prevention and treatment. Among the latest developments is the activation of AMPK by naturally occurring dietary constituents and plant products – termed phytochemicals. Owing to their efficacy and safety, phytochemicals are considered as an alternative to the conventional harmful chemotherapy. The rising popularity of using phytochemicals for cancer prevention and therapy is supported by a substantial progress in identifying the molecular pathways involved, including AMPK. In this article, we review the recent progress in this budding field that suggests AMPK as a new molecular target in the prevention and treatment of cancer by phytochemicals.
Collapse
Affiliation(s)
- Inyoung Kim
- Pritzker School of Medicine, University of Chicago , Chicago, IL , USA
| | | |
Collapse
|
15
|
Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis 2013; 4:e653. [PMID: 23744353 PMCID: PMC3698552 DOI: 10.1038/cddis.2013.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Engagement of the mitochondrial-death amplification pathway is an essential component in chemotherapeutic execution of cancer cells. Therefore, identification of mitochondria-targeting agents has become an attractive avenue for novel drug discovery. Here, we report the anticancer activity of a novel Osmium-based organometallic compound (hereafter named Os) on different colorectal carcinoma cell lines. HCT116 cell line was highly sensitive to Os and displayed characteristic features of autophagy and apoptosis; however, inhibition of autophagy did not rescue cell death unlike the pan-caspase inhibitor z-VAD-fmk. Furthermore, Os significantly altered mitochondrial morphology, disrupted electron transport flux, decreased mitochondrial transmembrane potential and ATP levels, and triggered a significant increase in reactive oxygen species (ROS) production. Interestingly, the sensitivity of cell lines to Os was linked to its ability to induce mitochondrial ROS production (HCT116 and RKO) as HT29 and SW620 cell lines that failed to show an increase in ROS were resistant to the death-inducing activity of Os. Finally, intra-peritoneal injections of Os significantly inhibited tumor formation in a murine model of HCT116 carcinogenesis, and pretreatment with Os significantly enhanced tumor cell sensitivity to cisplatin and doxorubicin. These data highlight the mitochondria-targeting activity of this novel compound with potent anticancer effect in vitro and in vivo, which could have potential implications for strategic therapeutic drug design.
Collapse
Affiliation(s)
- A Maillet
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|