1
|
Truong AD, Tran HTT, Phan L, Phan TH, Chu NT, Vu TH, Nguyen HM, Nguyen LP, Kim C, Dang HV, Hong YH. Differentially Expressed miRNA Profiles in Serum-Derived Exosomes from Cattle Infected with Lumpy Skin Disease Virus. Pathogens 2025; 14:176. [PMID: 40005551 PMCID: PMC11858326 DOI: 10.3390/pathogens14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Exosomal miRNAs from individual cells are crucial in regulating the immune response to infectious diseases. In this study, we performed small RNA sequencing (small RNA-seq) analysis to identify the expressed and associated exosomal miRNAs in the serum of cattle infected with lumpy skin disease virus (LSDV). Cattle were infected with a 106.5 TCID50/mL LSDV Vietnam/HaTinh/CX01 (HT10) strain and exosomal miRNA expression in the serum of infected cattle was analyzed using small RNA sequencing (small RNA-seq). We identified 59 differentially expressed (DE) miRNAs in LSDV-infected cattle compared to uninfected controls, including 18 upregulated and 41 downregulated miRNAs. These 59 miRNAs were used to predict 7656 target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the target genes were enriched in several biological processes and pathways associated with viral replication, immune response, virus-host interactions, and signal transduction. Additionally, we identified 708 potentially novel cattle miRNAs corresponding to 710 genomic loci. The transcription levels of five miRNA genes (bta-miR-11985, bta-miR-1281, bta-miR-12034, bta-miR-let-7i, and bta-miR-17-5p) were validated using reverse transcription quantitative real-time PCR, showing consistency with the small RNA-seq results. Overall, these findings provide significant insights into the immune and protective responses during LSDV infection in cattle, offering valuable information on identifying new biomarkers and understanding the pathogenesis of LSDV.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Thi Hoai Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Thi Hao Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Hieu Minh Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Linh Phuong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Chaeeun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam; (A.D.T.); (H.T.T.T.); (L.P.); (T.H.P.); (N.T.C.); (T.H.V.); (H.M.N.); (L.P.N.)
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| |
Collapse
|
2
|
Ferrara G, Sgadari M, Longobardi C, Iovane G, Pagnini U, Montagnaro S. Autophagy up-regulation upon FeHV-1 infection on permissive cells. Front Vet Sci 2023; 10:1174681. [PMID: 37397000 PMCID: PMC10312237 DOI: 10.3389/fvets.2023.1174681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
FeHV-1 is a member of the Herpesviridae family that is distributed worldwide and causes feline viral rhinotracheitis (FVR). Since its relationship with the autophagic process has not yet been elucidated, the aim of this work was to evaluate the autophagy mediated by FeHV-1 and to determine its proviral or antiviral role. Our data showed that autophagy is induced by FeHV-1 in a viral dose and time-dependent manner. Phenotypic changes in LC3/p62 axis (increase of LC3-II and degradation of p62) were detected from 12 h post infection using western blot and immuno-fluorescence assays. In a second step, by using late autophagy inhibitors and inducers, the possible proviral role of autophagy during FeHV-1 infection was investigating by assessing the effects of each chemical in terms of viral yield, cytotoxic effects, and expression of viral glycoproteins. Our findings suggest that late-stage autophagy inhibitors (bafilomycin and chloroquine) have a negative impact on viral replication. Interestingly, we observed an accumulation of gB, a viral protein, when cells were pretreated with bafilomycin, whereas the opposite effect was observed when an autophagy inducer was used. The importance of autophagy during FeHV-1 infection was further supported by the results obtained with ATG5 siRNA. In summary, this study demonstrates FeHV-1-mediated autophagy induction, its proviral role, and the negative impact of late autophagy inhibitors on viral replication.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Mariafrancesca Sgadari
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Romeo F, Delgado S, Uriarte EL, Storani L, Cuesta LM, Morán P, Altamiranda EG, Odeón A, Pérez S, Verna A. Study of the dynamics of in vitro infection with bovine gammaherpesvirus type 4 and apoptosis markers in susceptible cells. Microb Pathog 2022; 169:105645. [PMID: 35716923 DOI: 10.1016/j.micpath.2022.105645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
Bovine gammaherpesvirus type 4 (BoHV-4) shows tropism for the endometrium, in which it causes the death of epithelial and stroma cells. Despite having anti-apoptotic genes in its genome, experiments based on immortalized cell lines have shown that BoHV-4 induces cell death by apoptosis. In the present study, we evaluated BoHV-4 replication, pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) mitochondrial genes expression and chromatin condensation in bovine endometrium primary culture cells (BEC) and in the Madin Darby bovine kidney (MDBK) cell line. Results showed that BoHV-4 has a preference for replication in BEC cells over the MDBK cell line, demonstrated by the high viral titer that is consistent with the tropism of the virus. In BEC cells, chromatin condensation was consistent with the values of viral kinetics at the late stage of infection, accompanied with a balance in the mRNA levels of apoptotic mitochondrial proteins. As a consequence, in those cells viral transmission would be enhanced by inhibiting apoptosis in the early stage of virus proliferation, allowing the complete production of viral progeny, and then, the induction of apoptosis in late stages would allow neighboring cells infection. In MDBK cells replication kinetics was coincident with the up-regulation of Bcl-2, which suggests that the productive infection in MDBK is associated with a lytic phase of the virus or another cell death pathway (probably autophagy mechanism) at the late stage of infection. The results agree with the study of nuclear morphology, where a constant chromatin condensation was observed over time. It is clear that the documented BoHV-4 apoptotic responses observed in the cell lines studied above are not valid in cells from primary cultures. The data presented in this study suggest that BoHV-4 could induce apoptosis in BEC cells without a leading role of the mitochondria pathway. Further studies will be necessary to characterize in detail the programmed cell death pathways involved in BoHV-4 infection in the primary cell cultures evaluated.
Collapse
Affiliation(s)
- Florencia Romeo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Santiago Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Enrique Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Leonardo Storani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Agrobiotecnología. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina; Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación. Godoy Cruz, 2370, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Martínez Cuesta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET. Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Pedro Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Erika González Altamiranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Anselmo Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Sandra Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET. Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Andrea Verna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Morán P, Manrique J, Pérez S, Romeo F, Odeón A, Jones L, Verna A. Analysis of the anti-apoptotic v-Bcl2 and v-Flip genes and effect on in vitro programmed cell death of Argentinean isolates of bovine gammaherpesvirus 4 (BoHV-4). Microb Pathog 2020; 144:104170. [PMID: 32224211 DOI: 10.1016/j.micpath.2020.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
Abstract
Some viruses encode inhibitory factors of apoptosis during infection to prolong cell viability and then to achieve a higher production of viral progeny or facilitate persistent infections. There is evidence that some gammaherpesviruses, including BoHV-4, carry genes that can both inhibit or induce apoptosis. BoHV-4 possesses two genes (ORF16 and ORF71) that code for proteins with anti-apoptotic functions, such as v-Bcl2 and v-Flip, respectively. Thus, it is relevant to study BoHV-4 in relation to the modulation of apoptosis in infected cells as a strategy for persistence in the host. The objective of this work was to analyze whether variations in v-Flip and v- Bcl2 of six phylogenetically divergent Argentinean isolates of BoHV-4 can influence the capacity of these strains to induce apoptosis in cell cultures. In this study, variations were mainly detected in the v-Flip gene and protein of the BoHV-4 strains belonging to genotype 3. Thus, it is possible to infer that sequence variations could be associated with some BoHV-4 genotype. Induction of apoptosis was not a significant event for any of the genetically distinct local isolates of BoHV-4 and there was not an evident relationship between the variability of both genes with the apoptotic effect of the phylogenetically distinct strains.
Collapse
Affiliation(s)
- Pedro Morán
- Facultad Ciencias Veterinarias, UNCPBA, Argentina
| | | | - Sandra Pérez
- Facultad Ciencias Veterinarias, UNCPBA, Argentina; CONICET, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Argentina
| | - Florencia Romeo
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - Leandro Jones
- CONICET, Argentina; Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco, Argentina
| | - Andrea Verna
- CONICET, Argentina; Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina.
| |
Collapse
|
5
|
Montagnaro S, Damiano S, Ciarcia R, Puzio MV, Ferrara G, Iovane V, Forte IM, Giordano A, Pagnini U. Caprine herpesvirus 1 (CpHV-1) as a potential candidate for oncolytic virotherapy. Cancer Biol Ther 2018; 20:42-51. [PMID: 30409104 DOI: 10.1080/15384047.2018.1504722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Caprine Herpesvirus type 1 (CpHV-1) is a species-specific herpes virus able to induce apoptosis in several biological systems. In the present study we aimed to investigate the ability of CpHV-1 to reduce cells viability, to replicate and to cause cell death also in human cancer cell lines. We tested the CpHV-1 effects on HEL-299, Vero, MDA-MB-468, HeLa, U2OS, PC3, A549 and K562 neoplastic cell lines and on MDBK cells. Firstly, we evaluated the effect of CpHV-1 infection on cell viability by MTT assay and our data showed that CpHV-1 can induce a marked cytopathic effect (CPE) in most of cell lines tested, except for HEL-299, Vero and K562 cells. The reduction of cell viability was associated with a significant increase of viral production. We next investigated if CpHV-1 was able to induce cell death and so through western blotting analysis we evaluated cleaved caspase 3, LC3II and p62 protein levels after infection. Caspase 3 activation was detected in MDBK cells and, even if at different times p.i., also in MDA-MB-468, U2OS, and PC3 cell lines, while LC3II increase and concomitant p62 protein reduction were observed only in U2OS, and A549 cells, no significant alteration of these proteins was observed in the other cell lines tested. Finally, to confirm virus ability to trigger apoptosis we performed an Annexin-V apoptosis test after 24 h p.i. Although we need to further explore mechanisms underlying CpHV-1 treatment, this study could serve as the basis for the development of new treatment options aiming to fight several cancer types.
Collapse
Affiliation(s)
- Serena Montagnaro
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| | - Sara Damiano
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| | - Roberto Ciarcia
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| | - Maria Valeria Puzio
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| | - Gianmarco Ferrara
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| | - Valentina Iovane
- b Department of Pharmacy , University of Salerno , Fisciano (Na) , Italia
| | - Iris Maria Forte
- c OncologyResearch Center of Mercogliano (CROM) , Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale" , Napoli , Italia
| | - Antonio Giordano
- d Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology , Temple University , Philadelphia , Pennsylvania , USA
| | - Ugo Pagnini
- a Department of Veterinary Medicine and Animal Productions , University of Naples "Federico II" , Napoli , Italia
| |
Collapse
|
6
|
Damiano S, Montagnaro S, Puzio MV, Severino L, Pagnini U, Barbarino M, Cesari D, Giordano A, Florio S, Ciarcia R. Effects of antioxidants on apoptosis induced by dasatinib and nilotinib in K562 cells. J Cell Biochem 2018; 119:4845-4854. [PMID: 29345355 DOI: 10.1002/jcb.26686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
In clinical practice for the treatment of chronic myeloid leukemia, second generation of tyrosine kinase inhibitors such as Nilotinib (NIL) specific and potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL and Src family kinase were developed to clinically overcome imatinib resistance. In this study, we wanted to test the ability of some antioxidants such Resveratrol (RES) or a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) or δ-tocotrienol (δ-TOCO) to interact with DAS and NIL on viability, reactive oxygen species (ROS) production, lipid peroxidation, and apoptosis. To test the possible mechanisms of action of such antioxidants, we utilized N-acetyl-L-cysteine (NAC) a specific inhibitor ROS production or PP1 a specific Src tyrosine kinase inhibitor or BAPTA a specific chelator of intracellular calcium. Our data demonstrated: 1) RES, rMnSOD, δ-TOCO, and NAC, at dose used, significantly reduced the intracellular levels of MDA induced by DAS or NIL; 2) RES, rMnSOD, and δ-TOCO increased the intracellular ROS levels; 3) The increase ROS levels is related to higher levels of oligonucleosomesi induced by DAS and NIL and that NAC significantly reduced this activity. Interestingly, our data showed that apoptotic activity of DAS and NIL have significantly increased the production of oligonucleosomes by triggering excessive ROS generation as well as functionality of SERCA receptors.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Maria V Puzio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Lorella Severino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Marcella Barbarino
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Daniele Cesari
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Morán PE, Pérez SE, Odeón AC, Verna AE. [Bovine herpesvirus 4 (BoHV-4): general aspects of the biology and status in Argentina]. Rev Argent Microbiol 2015; 47:155-66. [PMID: 25962539 DOI: 10.1016/j.ram.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle with respiratory infections, vulvovaginitis, mastitis, abortions, endometritis and from apparently healthy animals throughout the world. Although it has not yet been established as causal agent of a specific disease entity, it is primarily associated with reproductive disorders of cattle. This virus can infect a wide range of species, either in vivo or in vitro. Two groups of prototype strains were originated from the first isolates: the DN599-type strains (American group) and the Movar-type strains (European group). In Argentina, BoHV-4 was isolated and characterized in 2007 from vaginal discharge samples taken from cows that had aborted. So far, more than 40 isolates, mainly associated with aborting bovine females have been registered in our country.
Collapse
Affiliation(s)
- Pedro E Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina.
| | - Sandra E Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Anselmo C Odeón
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| | - Andrea E Verna
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| |
Collapse
|
8
|
Montagnaro S, Ciarcia R, De Martinis C, Pacilio C, Sasso S, Puzio MV, De Angelis M, Pagnini U, Boffo S, Kenez I, Iovane G, Giordano A. Modulation of apoptosis by caprine herpesvirus 1 infection in a neuronal cell line. J Cell Biochem 2014; 114:2809-22. [PMID: 23836554 DOI: 10.1002/jcb.24628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/11/2022]
Abstract
Caprine herpesvirus type 1 (CpHV-1), like other members of the alpha subfamily of herpesviruses, establishes latent infections in trigeminal ganglion neurons. Our groups previously demonstrated that CpHV-1 induces apoptosis in goat peripheral blood mononuclear cells and in an epithelial bovine cell line, but the ability of CpHV-1 to induce apoptosis in neuronal cells remains unexplored. In this report, the susceptibility of Neuro 2A cells to infection by CpHV-1 was examined. Following infection of cultured cells with CpHV-1, expression of cell death genes was evaluated using real-time PCR and Western blot assays. Analysis of virus-infected cells revealed activation of caspase-8, a marker for the extrinsic pathway of apoptosis, and caspase-9, a marker for the intrinsic pathway of apoptosis at 12 and 24 h post-infection. Significant increase in the levels of cleaved caspase-3 was also observed at the acme of cytopathic effect at 24 h post-infection. In particular, at 3 and 6 h post-infection, several proapototic genes were under-expressed. At 12 h post-infection several proapototic genes such as caspases, TNF, Cd70, and Traf1 were over expressed while Bcl2a1a, Fadd, and TNF genes were underexpressed. In conclusion, the simultaneous activation of caspase-8 and caspase-9 suggests that CpHV-1 can trigger the death-receptor pathway and the mitochondrial pathway separately and in parallel. Our findings are significant because this is the first published study showing the effect of CpHV-1 infection in neuronal cells in terms of gene expression and apoptosis modulation.
Collapse
Affiliation(s)
- Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino no. 1, 80137, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vallejo D, Crespo I, San-Miguel B, Alvarez M, Prieto J, Tuñón MJ, González-Gallego J. Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure. Vet Res 2014; 45:15. [PMID: 24490870 PMCID: PMC3922607 DOI: 10.1186/1297-9716-45-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The Rabbit Hemorrhagic Disease Virus (RHDV) induces a severe disease that fulfils many requirements of an animal model of fulminant hepatic failure. However, a better knowledge of molecular mechanisms contributing to liver damage is required, and it is unknown whether the RHDV induces liver autophagy and how it relates to apoptosis. In this study, we attempted to explore which signalling pathways were involved in the autophagic response induced by the RHDV and to characterize their role in the context of RHDV pathogenesis. Rabbits were infected with 2 × 10⁴ hemmaglutination units of a RHDV isolate. The autophagic response was measured as presence of autophagic vesicles, LC3 staining, conversion of LC3-I to autophagosome-associated LC3-II and changes in expression of beclin-1, UVRAG, Atg5, Atg12, Atg16L1 and p62/SQSTM1. RHDV-triggered autophagy reached a maximum at 24 hours post-infection (hpi) and declined at 30 and 36 hpi. Phosphorylation of mTOR also augmented in early periods of infection and there was an increase in the expression of the endoplasmic reticulum chaperones BiP/GRP78, CHOP and GRP94. Apoptosis, measured as caspase-3 activity and expression of PARP-1, increased significantly at 30 and 36 hpi in parallel to the maximal expression of the RHDV capsid protein VP60. These data indicate that RHDV infection initiates a rapid autophagic response, perhaps in an attempt to protect liver, which associates to ER stress development and is independent from downregulation of the major autophagy suppressor mTOR. As the infection continues and the autophagic response declines, cells begin to exhibit apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | | |
Collapse
|
10
|
Tovilovic G, Ristic B, Milenkovic M, Stanojevic M, Trajkovic V. The Role and Therapeutic Potential of Autophagy Modulation in Controlling Virus-Induced Cell Death. Med Res Rev 2013; 34:744-67. [DOI: 10.1002/med.21303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordana Tovilovic
- Institute for Biological Research; University of Belgrade; Despot Stefan Boulevard 142 11000 Belgrade Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Maja Stanojevic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| |
Collapse
|
11
|
Ciarcia R, Damiano S, Montagnaro S, Pagnini U, Ruocco A, Caparrotti G, d'Angelo D, Boffo S, Morales F, Rizzolio F, Florio S, Giordano A. Combined effects of PI3K and SRC kinase inhibitors with imatinib on intracellular calcium levels, autophagy, and apoptosis in CML-PBL cells. Cell Cycle 2013; 12:2839-48. [PMID: 23966159 DOI: 10.4161/cc.25920] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca (2+)-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease.
Collapse
Affiliation(s)
- Roberto Ciarcia
- Department of Veterinary Medicine and Animal Production; Sections of Pharmacology and Infectious Diseases; University of Naples "Federico II"; Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|