1
|
Li J, Hilimire TA, Liu Y, Wang L, Liang J, Gyorffy B, Sikirzhytski V, Ji H, Zhang L, Cheng C, Ding X, Kerr KR, Dowling CE, Chumanevich AA, Mack ZT, Schools GP, Lim CU, Ellis L, Zi X, Porter DC, Broude EV, McInnes C, Wilding G, Lilly MB, Roninson IB, Chen M. Mediator kinase inhibition reverses castration resistance of advanced prostate cancer. J Clin Invest 2024; 134:e176709. [PMID: 38546787 DOI: 10.1172/jci176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas A Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| | - Yueying Liu
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Kendall R Kerr
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Charles E Dowling
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences; Walter Reed National Military Medical Center; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences, University of California, Irvine, California, USA
| | | | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael B Lilly
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| |
Collapse
|
2
|
Kulkarni P, Salgia R, Rangarajan G. Intrinsically disordered proteins and conformational noise: The hypothesis a decade later. iScience 2023; 26:107109. [PMID: 37408690 PMCID: PMC10319216 DOI: 10.1016/j.isci.2023.107109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Phenotypic plasticity is the ability of individual genotypes to produce different phenotypes in response to environmental perturbations. We previously postulated how conformational noise emanating from conformational dynamics of intrinsically disordered proteins (IDPs) which is distinct from transcriptional noise, can contribute to phenotypic switching by rewiring the cellular protein interaction network. Since most transcription factors are IDPs, we posited that conformational noise is an integral component of transcriptional noise implying that IDPs may amplify total noise in the system either stochastically or in response to environmental changes. Here, we review progress in elucidating the details of the hypothesis. We highlight empirical evidence supporting the hypothesis, discuss conceptual advances that underscore its fundamental importance and implications, and identify areas for future investigations.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Park SY, Jeong HY, Batara DC, Lee SJ, Cho JY, Kim SH. Sprouty 1 is associated with stemness and cancer progression in glioblastoma. IBRO Neurosci Rep 2022; 13:120-126. [PMID: 35910677 PMCID: PMC9334334 DOI: 10.1016/j.ibneur.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe type of human brain tumor, with a poor prognosis and a low survival rate. GBM is composed of a variety of cell types, including glioma stem-like cells (GSCs), which attribute to its therapeutic resistance (Boyd et al., 2020). Sprouty1 (SPRY1) was first identified as a receptor tyrosine kinases (RTK) signaling mediator in a mammalian cell (Christofori, 2003), however, its role in GBM is unknown. Therefore, the goal of this study was to investigate the role of SPRY1 in the stemness and aggressiveness of GSCs. The mRNA expression levels of SPRY1 were confirmed using quantitative reverse transcription PCR (RT-qPCR) in normal human astrocytes (NHA), glioma cells, and glioma stem cells. SPRY1 expression was inhibited in glioma stem cells using small interference RNA (siRNAs) to examine its role in cell proliferation and tumorsphere formation. Bioinformatics analyses were also employed to investigate the association of SPRY1 expression with patient survival, tumor grade, and subtypes publicly available datasets. We demonstrated that SPRY1 is highly expressed in glioma stem cells than in NHA, glioma cells, and differentiated glioma stem cells. siRNA-mediated downregulation of SPRY1 expression decreased the stemness and self-renewal ability in GSC11. Bioinformatics results showed that high SPRY1 expression correlates with poor overall survival in glioma patients. Our findings suggest that SPRY1 contributes to the stemness and aggressiveness of GBM. Glioblastoma (GBM) is the most aggressive cancer type in human brain. Glioma stem cell (GSC) is a small population in GBM, associated therapy resistance and recurrence. Sprouty1 expression associated with GBM grade and patient survival. Sprouty1 highly expressed in GBM cell lines and GSC. Suppression of SPRY1 expression downregulated GSC proliferation and tumorsphere formation.
Collapse
Affiliation(s)
- Seo-Young Park
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
| | - Hang Yeon Jeong
- Research Group of Aging Metabolism, Korea Food Research Institute, Wanju, the Republic of Korea
| | - Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk, the Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, the Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, the Republic of Korea
- Correspondence to: Chonnam National University, 77 Yongbongro, Gwangju 61186, the Republic of Korea.
| |
Collapse
|
4
|
Gu CY, Dai B, Zhu Y, Lin GW, Wang HK, Ye DW, Qin XJ. The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma. Mol Med 2022; 28:78. [PMID: 35836112 PMCID: PMC9284787 DOI: 10.1186/s10020-022-00504-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays the critical roles in promoting tumor progression, aggressiveness, and metastasis. Although few studies have revealed some angiogenesis-related genes (ARGs) could serve as prognosis-related biomarkers for the prostate cancer (PCa), the integrated role of ARGs has not been systematically studied. The RNA-sequencing data and clinical information of prostate adenocarcinoma (PRAD) were downloaded from The Cancer Genome Atlas (TCGA) as discovery dataset. Twenty-three ARGs in total were identified to be correlated with prognosis of PRAD by the univariate Cox regression analysis, and a 19-ARG signature was further developed with significant correlation with the disease-free survival (DFS) of PRAD by the least absolute shrinkage and selection operator (LASSO) Cox regression with tenfold cross-validation. The signature stratified PRAD patients into high- and low-ARGs signature score groups, and those with high ARGs signature score were associated with significantly poorer outcomes (median DFS: 62.71 months vs unreached, p < 0.0001). The predicting ability of ARGs signature was subsequently validated in two independent cohorts of GSE40272 & PRAD_MSKCC. Notably, the 19-ARG signature outperformed the typical clinical features or each involved ARG in predicting the DFS of PRAD. Furthermore, a prognostic nomogram was constructed with three independent prognostic factors, including the ARGs signature, T stage and Gleason score. The predicted results from the nomogram (C-index = 0.799, 95%CI = 0.744-0.854) matched well with the observed outcomes, which was verified by the calibration curves. The values of area under receiver operating characteristic curve (AUC) for DFS at 1-, 3-, 5-year for the nomogram were 0.82, 0.83, and 0.83, respectively, indicating the performance of nomogram model is of reasonably high accuracy and robustness. Moreover, functional enrichment analysis demonstrated the potential targets of E2F targets, G2M checkpoint pathways, and cell cycle pathways to suppress the PRAD progression. Of note, the high-risk PRAD patients were more sensitive to immune therapies, but Treg might hinder benefits from immunotherapies. Additionally, this established tool also could predict response to neoadjuvant androgen deprivation therapy (ADT) and some chemotherapy drugs, such as cisplatin, paclitaxel, and docetaxel, etc. The novel ARGs signature, with prognostic significance, can further promote the application of targeted therapies in different stratifications of PCa patients.
Collapse
Affiliation(s)
- Cheng-Yuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guo-Wen Lin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xiao-Jian Qin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Kulkarni P. Intrinsically Disordered Proteins: Insights from Poincaré, Waddington, and Lamarck. Biomolecules 2020; 10:E1490. [PMID: 33126482 PMCID: PMC7692701 DOI: 10.3390/biom10111490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
The past quarter-century may justly be referred to as a period analogous to the "Cambrian explosion" in the history of proteins. This period is marked by the appearance of the intrinsically disordered proteins (IDPs) on the scene since their discovery in the mid-1990s. Here, I first reflect on how we accidentally stumbled on these fascinating molecules. Next, I describe our research on the IDPs over the past decade and identify six areas as important for future research in this field. In addition, I draw on discoveries others in the field have made to present a more comprehensive essay. More specifically, I discuss the role of IDPs in two fundamental aspects of life: in phenotypic switching, and in multicellularity that marks one of the major evolutionary transitions. I highlight how serendipity, imagination, and an interdisciplinary approach embodying empirical evidence and theoretical insights from the works of Poincaré, Waddington, and Lamarck, shaped our thinking, and how this led us to propose the MRK hypothesis, a conceptual framework addressing phenotypic switching, the emergence of new traits, and adaptive evolution via nongenetic and IDP conformation-based mechanisms. Finally, I present a perspective on the evolutionary link between phenotypic switching and the origin of multicellularity.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
7
|
Lin CJ, Lo UG, Hsieh JT. The regulatory pathways leading to stem-like cells underlie prostate cancer progression. Asian J Androl 2020; 21:233-240. [PMID: 30178777 PMCID: PMC6498735 DOI: 10.4103/aja.aja_72_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the most common cause of malignancy in males and the third leading cause of cancer mortality in the United States. The standard care for primary PCa with local invasive disease mainly is surgery and radiation. For patients with distant metastases, androgen deprivation therapy (ADT) is a gold standard. Regardless of a favorable outcome of ADT, patients inevitably relapse to an end-stage castration-resistant prostate cancer (CRPC) leading to mortality. Therefore, revealing the mechanism and identifying cellular components driving aggressive PCa is critical for prognosis and therapeutic intervention. Cancer stem cell (CSC) phenotypes characterized as poor differentiation, cancer initiation with self-renewal capabilities, and therapeutic resistance are proposed to contribute to the onset of CRPC. In this review, we discuss the role of CSC in CRPC with the evidence of CSC phenotypes and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - U-Ging Lo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Lin X, Roy S, Jolly MK, Bocci F, Schafer NP, Tsai MY, Chen Y, He Y, Grishaev A, Weninger K, Orban J, Kulkarni P, Rangarajan G, Levine H, Onuchic JN. PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer. J Mol Biol 2018; 430:2422-2438. [PMID: 29758263 DOI: 10.1016/j.jmb.2018.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Prostate-associated gene 4 (PAGE4) is an intrinsically disordered protein implicated in prostate cancer. Thestress-response kinase homeodomain-interacting protein kinase 1 (HIPK1) phosphorylates two residues in PAGE4, serine 9 and threonine 51. Phosphorylation of these two residues facilitates the interaction of PAGE4 with activator protein-1 (AP-1) transcription factor complex to potentiate AP-1's activity. In contrast, hyperphosphorylation of PAGE4 by CDC-like kinase 2 (CLK2) attenuates this interaction with AP-1. Small-angleX-ray scattering and single-molecule fluorescence resonance energy transfer measurements have shown that PAGE4 expands upon hyperphosphorylation and that this expansion is localized to its N-terminal half. To understand the interactions underlying this structural transition, we performed molecular dynamics simulations using Atomistic AWSEM, a multi-scale molecular model that combines atomistic and coarse-grained simulation approaches. Our simulations show that electrostatic interactions drive transient formation of an N-terminal loop, the destabilization of which accounts for the dramatic change in size upon hyperphosphorylation. Phosphorylation also changes the preference of secondary structure formation of the PAGE4 ensemble, which leads to a transition between states that display different degrees of disorder. Finally, we construct a mechanism-based mathematical model that allows us to capture the interactions ofdifferent phosphoforms of PAGE4 with AP-1 and its downstream target, the androgen receptor (AR)-a key therapeutic target in prostate cancer. Our model predicts intracellular oscillatory dynamics of HIPK1-PAGE4, CLK2-PAGE4, and AR activity, indicating phenotypic heterogeneity in an isogenic cell population. Thus, conformational switching of PAGE4 may potentially affect the efficiency of therapeutically targeting AR activity.
Collapse
Affiliation(s)
- Xingcheng Lin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States
| | - Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Min-Yeh Tsai
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Yihong Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Yanan He
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States; Department of BioSciences, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
9
|
Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Front Oncol 2018; 8:50. [PMID: 29560343 PMCID: PMC5845637 DOI: 10.3389/fonc.2018.00050] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms-those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
10
|
Terada N, Akamatsu S, Kobayashi T, Inoue T, Ogawa O, Antonarakis ES. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther Adv Med Oncol 2017; 9:565-573. [PMID: 28794807 PMCID: PMC5524249 DOI: 10.1177/1758834017719215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
Advances in our understanding of the mechanisms driving castration-resistant prostate cancer have promoted the development of several new drugs including androgen receptor-directed therapy and chemotherapy. Concomitant docetaxel treatment at the beginning of hormonal therapy for metastatic prostate cancer has resulted in longer overall survival than with hormonal therapy alone. Elucidating an appropriate treatment sequence using these therapies is important for maximizing clinical benefit in castration-sensitive and castration-resistant prostate cancer patients. The development of advanced high-throughput ‘omics’ technology has enabled the use of novel markers to guide prognosis and treatment of this disease. In this review, we outline the genomic landscape of prostate cancer and the molecular mechanisms of castration-resistant progression, and how these affect the development of new drugs, and their clinical implications for selecting treatment sequence. We also discuss many of the potential tissue-based or liquid biomarkers that may soon enter clinical use, with the hope that several of these prognostic or predictive markers will guide precision medicine for prostate cancer patients in the near future.
Collapse
Affiliation(s)
- Naoki Terada
- Department of Urology, Kyoto University, Kyoto, Japan
| | | | | | | | - Osamu Ogawa
- Department of Urology, Kyoto University, Kyoto, Japan
| | - Emmanuel S Antonarakis
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, CRB1-1M45, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Jia D, Jolly MK, Kulkarni P, Levine H. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers (Basel) 2017; 9:E70. [PMID: 28640191 PMCID: PMC5532606 DOI: 10.3390/cancers9070070] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
12
|
Bilir B, Sharma NV, Lee J, Hammarstrom B, Svindland A, Kucuk O, Moreno CS. Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer. Int J Oncol 2017; 51:223-234. [PMID: 28560383 PMCID: PMC5467777 DOI: 10.3892/ijo.2017.4017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have shown that dietary compounds have significant effects on prostate carcinogenesis. Among dietary agents, genistein, the major isoflavone in soybean, is of particular interest because high consumption of soy products has been associated with a low incidence of prostate cancer, suggesting a preventive role of genistein in prostate cancer. In spite of numerous studies to understand the effects of genistein on prostate cancer, the mechanisms of action have not been fully elucidated. We investigated the differences in methylation and gene expression levels of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy using Illumina HumanMethylation450 and Illumina HumanHT-12 v4 Expression BeadChip Microarrays. The present study was a randomized, placebo-controlled, double-blind clinical trial on Norwegian patients who received 30 mg genistein or placebo capsules daily for 3–6 weeks before prostatectomy. Gene expression changes were validated by quantitative PCR (qPCR). Whole genome methylation and expression profiling identified differentially methylated sites and expressed genes between placebo and genistein groups. Differentially regulated genes were involved in developmental processes, stem cell markers, proliferation and transcriptional regulation. Enrichment analysis suggested overall reduction in MYC activity and increased PTEN activity in genistein-treated patients. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.
Collapse
Affiliation(s)
- Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitya V Sharma
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jeongseok Lee
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Bato Hammarstrom
- Department of Urology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Aud Svindland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Mooney SM, Jolly MK, Levine H, Kulkarni P. Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins. Asian J Androl 2017; 18:704-10. [PMID: 27427552 PMCID: PMC5000791 DOI: 10.4103/1008-682x.183570] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A striking characteristic of cancer cells is their remarkable phenotypic plasticity, which is the ability to switch states or phenotypes in response to environmental fluctuations. Phenotypic changes such as a partial or complete epithelial to mesenchymal transition (EMT) that play important roles in their survival and proliferation, and development of resistance to therapeutic treatments, are widely believed to arise due to somatic mutations in the genome. However, there is a growing concern that such a deterministic view is not entirely consistent with multiple lines of evidence, which indicate that stochasticity may also play an important role in driving phenotypic plasticity. Here, we discuss how stochasticity in protein interaction networks (PINs) may play a key role in determining phenotypic plasticity in prostate cancer (PCa). Specifically, we point out that the key players driving transitions among different phenotypes (epithelial, mesenchymal, and hybrid epithelial/mesenchymal), including ZEB1, SNAI1, OVOL1, and OVOL2, are intrinsically disordered proteins (IDPs) and discuss how plasticity at the molecular level may contribute to stochasticity in phenotypic switching by rewiring PINs. We conclude by suggesting that targeting IDPs implicated in EMT in PCa may be a new strategy to gain additional insights and develop novel treatments for this disease, which is the most common form of cancer in adult men.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005; Department of Bioengineering, Rice University, Houston, TX 77005; Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
14
|
Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci U S A 2017; 114:E2644-E2653. [PMID: 28289210 DOI: 10.1073/pnas.1700082114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.
Collapse
|
15
|
Yang Y, Wang Y, Liang Q, Yao L, Gu S, Bai X. MiR-338-5p Promotes Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Targeting SPRY1. J Cell Biochem 2017; 118:2295-2301. [PMID: 28098403 DOI: 10.1002/jcb.25883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/26/2022]
Abstract
Our purpose is to study the roles of microRNA-338-5p (miR-338-5p) on the proliferation, invasion, and inflammatory response of fibroblast-like synoviocytes (SFs) in rheumatoid arthritis patients by regulating SPRY1. The target relationship between miR-338-5p and SPRY1 was validated through luciferase reporter system. The expression of miR-338-5p and SPRY1 in synovial tissues and synovial cells were detected using RT-PCR and western blot. The mimics and inhibitors of miR-338-5p were transfected into SFs. MTT, Transwell, and ELISA assays were used to analyze cell proliferation, invasiveness, and the secreted extracellular pro-inflammatory cytokines (such as IL-1a, IL-6, COX2) levels of SFs. MiR-338-5p was highly expressed in rheumatoid arthritis tissues and cells, and directly down-regulated the expression of SPRY1 in the SFs of rheumatoid arthritis patients. Cell proliferation, invasiveness and the expression level of pro-inflammatory cytokines in synovial cells increased after the transfection of miR-338-5p mimics, while the proliferation, invasion and expression level of pro-inflammatory cytokines decreased after the transfection of miR-338-5p inhibitors. In conclusion,miR-338-5p promoted the proliferation, invasion and inflammatory reaction in SFs of rheumatoid arthritis by directly down-regulating SPRY1 expression. J. Cell. Biochem. 118: 2295-2301, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Yang
- Department of Sports Medicine and Joint Surgery/Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yanfeng Wang
- Department of Sports Medicine and Joint Surgery/Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Qingwei Liang
- Department of Sports Medicine and Joint Surgery/Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Lutian Yao
- Department of Sports Medicine and Joint Surgery/Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Shizhong Gu
- Department of Sports Medicine and Joint Surgery/Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xizhuang Bai
- Department of Sports Medicine/Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
16
|
Che L, Fan B, Pilo MG, Xu Z, Liu Y, Cigliano A, Cossu A, Palmieri G, Pascale RM, Porcu A, Vidili G, Serra M, Dombrowski F, Ribback S, Calvisi DF, Chen X. Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans. Oncogenesis 2016; 5:e274. [PMID: 27918553 PMCID: PMC5177771 DOI: 10.1038/oncsis.2016.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare yet deadly malignancy with limited treatment options. Activation of the Notch signalling cascade has been implicated in cholangiocarcinogenesis. However, while several studies focused on the Notch receptors required for ICC development, little is known about the upstream inducers responsible for their activation. Here, we show that the Jagged 1 (Jag1) ligand is almost ubiquitously upregulated in human ICC samples when compared with corresponding non-tumorous counterparts. Furthermore, we found that while overexpression of Jag1 alone does not lead to liver tumour development, overexpression of Jag1 synergizes with activated AKT signalling to promote liver carcinogenesis in AKT/Jag1 mice. Histologically, tumours consisted exclusively of ICC, with hepatocellular tumours not occurring in AKT/Jag1 mice. Furthermore, tumours from AKT/Jag1 mice exhibited extensive desmoplastic reaction, an important feature of human ICC. At the molecular level, we found that both AKT/mTOR and Notch cascades are activated in AKT/Jag1 ICC tissues, and that the Notch signalling is necessary for ICC development in AKT/Jag1 mice. In human ICC cell lines, silencing of Jag1 via specific small interfering RNA reduces proliferation and increases apoptosis. Finally, combined inhibition of AKT and Notch pathways is highly detrimental for the in vitro growth of ICC cell lines. In summary, our study demonstrates that Jag1 is an important upstream inducer of the Notch signalling in human and mouse ICC. Targeting Jag1 might represent a novel therapeutic strategy for the treatment of this deadly disease.
Collapse
Affiliation(s)
- L Che
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - B Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - M G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Z Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Department of Gastroenterology, Guizhou Provincial People's Hospital, The Affiliated People's Hospital of Guizhou Medical University, Guiyang, China
| | - Y Liu
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - A Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - A Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - G Palmieri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - R M Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - A Porcu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Vidili
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - M Serra
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - F Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - S Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - D F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - X Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Rehman M, Gurrapu S, Cagnoni G, Capparuccia L, Tamagnone L. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells. PLoS One 2016; 11:e0164660. [PMID: 27749937 PMCID: PMC5066946 DOI: 10.1371/journal.pone.0164660] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that Notch-PlexinD1 signaling axis may be targeted to impair prostate cancer cell invasiveness and metastasis.
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Diamines/pharmacology
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Jagged-1 Protein/pharmacology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Membrane Glycoproteins
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microscopy, Fluorescence
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/drug effects
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Thiazoles/pharmacology
- Transplantation, Heterologous
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Michael Rehman
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Gabriella Cagnoni
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorena Capparuccia
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Luca Tamagnone
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
18
|
EWS-FLI1-mediated suppression of the RAS-antagonist Sprouty 1 (SPRY1) confers aggressiveness to Ewing sarcoma. Oncogene 2016; 36:766-776. [PMID: 27375017 DOI: 10.1038/onc.2016.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Ewing sarcoma is characterized by chromosomal translocations fusing the EWS gene with various members of the ETS family of transcription factors, most commonly FLI1. EWS-FLI1 is an aberrant transcription factor driving Ewing sarcoma tumorigenesis by either transcriptionally inducing or repressing specific target genes. Herein, we showed that Sprouty 1 (SPRY1), which is a physiological negative feedback inhibitor downstream of fibroblast growth factor (FGF) receptors (FGFRs) and other RAS-activating receptors, is an EWS-FLI1 repressed gene. EWS-FLI1 knockdown specifically increased the expression of SPRY1, while other Sprouty family members remained unaffected. Analysis of SPRY1 expression in a panel of Ewing sarcoma cells showed that SPRY1 was not expressed in Ewing sarcoma cell lines, suggesting that it could act as a tumor suppressor gene in these cells. In agreement, induction of SPRY1 in three different Ewing sarcoma cell lines functionally impaired proliferation, clonogenic growth and migration. In addition, SPRY1 expression inhibited extracellular signal-related kinase/mitogen-activated protein kinase (MAPK) signaling induced by serum and basic FGF (bFGF). Moreover, treatment of Ewing sarcoma cells with the potent FGFR inhibitor PD-173074 reduced bFGF-induced proliferation, colony formation and in vivo tumor growth in a dose-dependent manner, thus mimicking SPRY1 activity in Ewing sarcoma cells. Although the expression of SPRY1 was low when compared with other tumors, SPRY1 was variably expressed in primary Ewing sarcoma tumors and higher expression levels were significantly associated with improved outcome in a large patient cohort. Taken together, our data indicate that EWS-FLI1-mediated repression of SPRY1 leads to unrestrained bFGF-induced cell proliferation, suggesting that targeting the FGFR/MAPK pathway can constitute a promising therapeutic approach for this devastating disease.
Collapse
|
19
|
Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene 2016; 36:618-627. [PMID: 27345403 PMCID: PMC5192002 DOI: 10.1038/onc.2016.232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
The role of Notch signaling in prostate cancer has not been defined definitively. Several large scale tissue microarray studies have revealed that the expression of some Notch signaling components including the Jagged1 ligand are upregulated in advanced human prostate cancer specimens. Jagged1 expressed by tumor cells may activate Notch signaling in both adjacent tumor cells and cells in tumor microenvironment. However, it remains undetermined whether increased Jagged1 expression reflects a cause for or a consequence of tumor progression in vivo. To address this question, we generated a novel R26-LSL-JAG1 mouse model that enables spatiotemporal Jagged1 expression. Prostate specific upregulation of Jagged1 neither interferes with prostate epithelial homeostasis nor significantly accelerates tumor initiation or progression in the prostate-specific Pten deletion mouse model for prostate cancer. However, Jagged1 upregulation results in increased inflammatory foci in tumors and incidence of intracystic adenocarcinoma. In addition, Jagged1 overexpression upregulates Tgfβ signaling in prostate stromal cells and promotes progression of a reactive stromal microenvironment in the Pten null prostate cancer model. Collectively, Jagged1 overexpression does not significantly accelerate prostate cancer initiation and progression in the context of loss-of-function of Pten, but alters tumor histopathology and microenvironment. Our study also highlights an understudied role of Notch signaling in regulating prostatic stromal homeostasis.
Collapse
|
20
|
Alternative CD44 splicing identifies epithelial prostate cancer cells from the mesenchymal counterparts. Med Oncol 2015; 32:159. [PMID: 25850653 PMCID: PMC4391735 DOI: 10.1007/s12032-015-0593-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
An epithelial to mesenchymal transition (EMT) has been shown to be a necessary precursor to prostate cancer metastasis. Additionally, the differential expression and splicing of mRNAs has been identified as a key means to distinguish epithelial from mesenchymal cells by qPCR, western blotting and immunohistochemistry. However, few markers exist to differentiate between these cells by flow cytometry. We previously developed two cell lines, PC3-Epi (epithelial) and PC3-EMT (mesenchymal). RNAseq was used to determine the differential expression of membrane proteins on PC3-Epi/EMT. We used western blotting, qPCR and flow cytometry to validate the RNAseq results. CD44 was one of six membrane proteins found to be differentially spliced between epithelial and mesenchymal PC3 cells. Although total CD44 was positive in all PC3-Epi/EMT cells, PC3-Epi cells had a higher level of CD44v6 (CD44 variant exon 6). CD44v6 was able to differentiate epithelial from mesenchymal prostate cancer cells using either flow cytometry, western blotting or qPCR.
Collapse
|