1
|
Hussen BM, Sulaiman SHA, Abdullah SR, Hidayat HJ, Khudhur ZO, Eslami S, Samsami M, Taheri M. MiRNA-155: A double-edged sword in colorectal cancer progression and drug resistance mechanisms. Int J Biol Macromol 2025; 299:140134. [PMID: 39842591 DOI: 10.1016/j.ijbiomac.2025.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide due to its aggressive nature and drug resistance, which limit traditional treatment effectiveness. Recent studies highlight the role of microRNAs (miRNAs) in tumorigenesis, metastasis, and chemotherapy resistance, with miRNA-155 emerging as a key player in CRC. miRNA-155 exerts dual effects, inducing drug resistance while serving as a potential therapeutic target. It regulates a wide array of mRNA transcripts associated with apoptosis, cell cycle regulation, and DNA repair, impacting various cellular pathways. Overexpression of miRNA-155 is linked to resistance against multiple chemotherapeutic drugs, promoting tumor cell survival, proliferation, and the epithelial-mesenchymal transition (EMT) process by repressing tumor suppressors and activating oncogenes. Additionally, miRNA-155 holds promise as a diagnostic and prognostic marker due to its association with CRC patient survival rates. However, its regulatory mechanisms across CRC subtypes remain unclear. This study provides insights into miRNA-155's role in CRC, focusing on its involvement in therapeutic resistance and potential as a therapeutic target. We also explore its significance as a prognostic biomarker and emphasize its therapeutic applications based on evidence from human, in vivo, in vitro, and clinical studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Seerwan Hamad Ameen Sulaiman
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-, Erbil, Kurdistan Region, Iraq
| | | | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang Z, Wang C, Shi W, Wang Z, Fu W. Construction of store-operated calcium entry-related gene signature for predicting prognosis and indicates immune microenvironment infiltration in stomach adenocarcinomas. Sci Rep 2024; 14:22342. [PMID: 39333689 PMCID: PMC11436956 DOI: 10.1038/s41598-024-73324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Gastric adenocarcinoma (STAD) is the most prevalent malignancy of the human digestive system and the fourth leading cause of cancer-related death. Calcium pools, especially Ca2+ entry (SOCE) for storage operations, play a crucial role in maintaining intracellular and extracellular calcium balance, influencing cell activity, and facilitating tumor progression. Nevertheless, the prognostic and immunological value of SOCE in STAD has not been systematically studied. The objective of this study was to develop a risk model for SOCE signature and to explore its correlation with clinical characteristics, prognosis, tumor microenvironment (TME), as well as response to immunotherapy, chemotherapy, and targeted drugs. We used the TCGA, GEO (GSE84437 and GSE159929), cBioPortal and TIMER databases to acquire mRNA expression data for STAD, along with patient clinical indicators, single-cell sequencing data, genomic variation information, and correlations of immune cell infiltration. An analysis of SOCE genes based on tumor vs. normal tissue comparisons, pan-cancer dimension, single-cell sequencing, DNA mutation, and copy number variation revealed that SOCE genes significantly impact the survival of STAD patients and are differentially involved in the immune response. SOCE co-expressed genes were identified by Pearson analysis, and subsequently protein-protein interaction (PPI) and gene function enrichment analysis indicated that coexpressed genes were associated with multicellular pathways. Based on TCGA and GSE84437 datasets, a multifactor Cox proportional hazard regression analysis was conducted to identify SOCE co-expressed genes associated with overall survival in STAD patients. Several mRNA prognostic genes, including PTPRJ, GPR146, LTBP3, FBLN1, EFEMP2, ADAMTS7 and LBH, were identified, which could be used as effective prognostic predictors for STAD patients. In both training and test datasets, receiver operating characteristic (ROC) curves were utilized to evaluate and illustrate the predictive capability of this characteristic in forecasting overall survival of STAD patients. The qPCR and human protein atlas (HPA) were employed to assess mRNA expression and protein levels. Furthermore, the ESTIMATE, TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, xCell and EPIC algorithms were utilized to perform immune score and analyze immune cell infiltration. It effectively revealed the difference in prognosis and immune cell infiltration in TME between high-risk and low-risk groups based on the risk signature associated with SOCE. Notably, significant differences in tumor immune dysfunction and rejection (TIDE) scores between the two groups, suggesting that patients in the low-risk group may exhibit a more favorable response to ICIS treatment. The GDSC database and R packages for predictive analysis were utilized to analyze responses to chemotherapy and targeted drugs in high-risk and low-risk groups. In summary, the 7-gene signature associated with SOCE serves as a significant biomarker for evaluating the TME and predicting the prognosis of STAD patients. In addition, it may provide valuable insights for developing effective immunotherapy and chemotherapy regiments for patients with STAD.
Collapse
Affiliation(s)
- Zichao Zhang
- Department of General Surgery, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Chenglong Wang
- Department of Otolaryngology, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
| | - Wenzheng Shi
- Department of General Surgery, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
3
|
Min Y, Deng W, Yuan H, Zhu D, Zhao R, Zhang P, Xue J, Yuan Z, Zhang T, Jiang Y, Xu K, Wu D, Cai Y, Suo C, Chen X. Single extracellular vesicle surface protein-based blood assay identifies potential biomarkers for detection and screening of five cancers. Mol Oncol 2024; 18:743-761. [PMID: 38194998 PMCID: PMC10920081 DOI: 10.1002/1878-0261.13586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Extracellular vesicles (EVs) and EV proteins are promising biomarkers for cancer liquid biopsy. Herein, we designed a case-control study involving 100 controls and 100 patients with esophageal, stomach, colorectal, liver, or lung cancer to identify common and type-specific biomarkers of plasma-derived EV surface proteins for the five cancers. EV surface proteins were profiled using a sequencing-based proximity barcoding assay. In this study, five differentially expressed proteins (DEPs) and eight differentially expressed protein combinations (DEPCs) showed promising performance (area under curve, AUC > 0.900) in pan-cancer identification [e.g., TENM2 (AUC = 0.982), CD36 (AUC = 0.974), and CD36-ITGA1 (AUC = 0.971)]. Our classification model could properly discriminate between cancer patients and controls using DEPs (AUC = 0.981) or DEPCs (AUC = 0.965). When distinguishing one cancer from the other four, the accuracy of the classification model using DEPCs (85-92%) was higher than that using DEPs (78-84%). We validated the performance in an additional 14 cancer patients and 14 controls, and achieved an AUC value of 0.786 for DEPs and 0.622 for DEPCs, highlighting the necessity to recruit a larger cohort for further validation. When clustering EVs into subpopulations, we detected cluster-specific proteins highly expressed in immune-related tissues. In the context of colorectal cancer, we identified heterogeneous EV clusters enriched in cancer patients, correlating with tumor initiation and progression. These findings provide epidemiological and molecular evidence for the clinical application of EV proteins in cancer prediction, while also illuminating their functional roles in cancer physiopathology.
Collapse
Affiliation(s)
- Yuxin Min
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Wenjiang Deng
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Dongliang Zhu
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Pengyan Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Jiangli Xue
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Tiejun Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Kelin Xu
- Department of Biostatistics, School of Public HealthFudan UniversityShanghaiChina
| | - Di Wu
- Vesicode ABStockholmSweden
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational MedicineShenzhenChina
| | - Chen Suo
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Shanghai Institute of Infectious Disease and BiosecurityShanghaiChina
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
5
|
Shi X, Liu X, Huang S, Hao Y, Pan S, Ke Y, Guo W, Wang Y, Ma H. miR-4443 promotes radiation resistance of esophageal squamous cell carcinoma via targeting PTPRJ. J Transl Med 2022; 20:626. [PMID: 36578050 PMCID: PMC9795664 DOI: 10.1186/s12967-022-03818-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Radiotherapy is one of the main treatments for esophageal squamous cell carcinoma (ESCC), but its efficacy is limited by radioresistance. MicroRNAs play a crucial role in posttranscriptional regulation, which is linked to the cancer response to radiation. METHODS We successfully established a radioresistant cell line model by using fractionated irradiation. qRT-PCR was adopted to detect the expression of miR-4443 in human normal esophageal cell lines, tumor cells, and radioresistant cells. Next, CCK-8, colony formation, apoptosis, and cell cycle assays were used to assess the biological effect of miR-4443. Weighted gene coexpression network analysis (WGCNA) was performed to identify potential radiosensitivity-related genes. Additionally, we predicted the probable targets of the miRNA using bioinformatic methods and confirmed them using Western blot. RESULTS miR-4443 was significantly upregulated in radioresistant ESCC cells. Enhancement of miR-4443 further decreased the radiosensitivity of ESCC cells, while inhibition of miR-4443 increased the radiosensitivity of ESCC cells. Notably, miR-4443 modulated radiosensitivity by influencing DNA damage repair, apoptosis, and G2 cycle arrest. By using WGCNA and experimental validation, we identified PTPRJ as a key target for miRNA-4443 to regulate radiosensitivity. The effects of miR-4443 overexpression or inhibition could be reversed by increasing or decreasing PTPRJ expression. CONCLUSION In this study, miR-4443 is found to promote radiotherapy resistance in ESCC cells by regulating PTPRJ expression, which provides a new perspective and clue to alleviate radioresistance.
Collapse
Affiliation(s)
- Xiaobo Shi
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Xiaoxiao Liu
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Shan Huang
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Yu Hao
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Shupei Pan
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Yue Ke
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Wei Guo
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Yuchen Wang
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| | - Hongbing Ma
- grid.452672.00000 0004 1757 5804Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xi Wu Road, Xi’an, 710004 China
| |
Collapse
|
6
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
7
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
8
|
Luo J, Ouyang W, Shen C, Cai J. Multi-relation graph embedding for predicting miRNA-target gene interactions by integrating gene sequence information. IEEE J Biomed Health Inform 2022; 26:4345-4353. [PMID: 35439150 DOI: 10.1109/jbhi.2022.3168008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulated studies have found that miRNAs are in charge of many complex diseases such as cancers by modulating gene expression. Predicting miRNA-target interactions is beneficial for uncovering the crucial roles of miRNAs in regulating target genes and the progression of diseases. The emergence of large-scale genomic and biological data as well as the recent development in heterogeneous networks provides new opportunities for miRNA target identification. Compared with conventional methods, computational methods become a decent solution for high efficiency. Thus, designing a method that could excavate valid information from the heterogeneous network and gene sequences is in great demand for improving the prediction accuracy. In this study, we proposed a graph-based model named MRMTI for the prediction of miRNA-target interactions. MRMTI utilized the multi-relation graph convolution module and the Bi-LSTM module to incorporate both network topology and sequential information. The learned embeddings of miRNAs and genes were then used to calculate the prediction scores of miRNA-target pairs. Comparisons with other state-of-the-art graph embedding methods and existing bioinformatic tools illustrated the superiority of MRMTI under multiple criteria metrics. Three variants of MRMTI implied the positive effect of multi-relation. The experimental results of case studies further demonstrated the prominent ability of MRMTI in predicting novel associations.
Collapse
|
9
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Basnet U, Patil AR, Kulkarni A, Roy S. Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5525. [PMID: 34063993 PMCID: PMC8196775 DOI: 10.3390/ijerph18115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Every year, more than a million individuals are diagnosed with colorectal cancer (CRC) across the world. Certain lifestyle and genetic factors are known to drive the high incidence and mortality rates in some groups of individuals. The presence of enormous amounts of reactive oxygen species is implicated for the on-set and carcinogenesis, and oxidant scavengers are thought to be important in CRC therapy. In this review, we focus on the ethnicity-based CRC disparities in the U.S., the negative effects of oxidative stress and apoptosis, and gene regulation in CRC carcinogenesis. We also highlight the use of antioxidants for CRC treatment, along with screening for certain regulatory genetic elements and oxidative stress indicators as potential biomarkers to determine the CRC risk and progression.
Collapse
Affiliation(s)
- Urbashi Basnet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Abhijeet R. Patil
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs: Potential Biomarkers and Therapeutic Targets in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13071522. [PMID: 33810219 PMCID: PMC8036642 DOI: 10.3390/cancers13071522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Around 40% of pheochromocytomas/paragangliomas (PPGL) harbor germline mutations, representing the highest heritability among human tumors. All PPGL have metastatic potential, but metastatic PPGL is overall rare. There is no available molecular marker for the metastatic potential of these tumors, and the diagnosis of metastatic PPGL can only be established if metastases are found at "extra-chromaffin" sites. In the era of precision medicine with individually targeted therapies and advanced care of patients, the treatment options for metastatic pheochromocytoma/paraganglioma are still limited. With this review we would like to nurture the idea of the quest for non-coding ribonucleic acids as an area to be further investigated in tumor biology. Non-coding RNA molecules encompassing microRNAs, long non-coding RNAs, and circular RNAs have been implicated in the pathogenesis of various tumors, and were also proposed as valuable diagnostic, prognostic factors, and even potential treatment targets. Given the fact that the pathogenesis of tumors including pheochromocytomas/paragangliomas is linked to epigenetic dysregulation, it is reasonable to conduct studies related to their epigenetic expression profiles and in this brief review we present a synopsis of currently available findings on the relevance of these molecules in these tumors highlighting their diagnostic potential.
Collapse
|
12
|
Wang Z, Li Y, Zhong Y, Wang Y, Peng M. Comprehensive Analysis of Aberrantly Expressed Competitive Endogenous RNA Network and Identification of Prognostic Biomarkers in Pheochromocytoma and Paraganglioma. Onco Targets Ther 2020; 13:11377-11395. [PMID: 33192072 PMCID: PMC7654541 DOI: 10.2147/ott.s271417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) functions as a competitive endogenous RNA (ceRNA) and plays an important role in the biological processes underlying tumorigenesis. However, studies describing the function of lncRNA in pheochromocytoma and paraganglioma (PCPG) remain largely unknown. Our study aims to construct a regulatory ceRNA network and explore prognostic biomarkers for PCPG through a comprehensive analysis. METHODS PCPG data from The Cancer Genome Atlas (TCGA) were utilized to obtain differentially expressed lncRNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs). Kaplan-Meier analysis was used to detect prognostic biomarkers and Cytoscape was utilized to construct a regulatory network of ceRNA. Potential lncRNA-miRNA-mRNA axes were inferred by correlation analysis. GO and KEGG pathways were constructed using "clusterProfiler" and "DOSE" R-packages. Immunohistochemistry (IHC) staining was performed to validate differential protein expression levels of genes in the axes. Finally, the GSE19422 dataset and Pan-Cancer data were applied to validate the expression pattern and survival status of mRNAs, respectively. RESULTS A total of 334 DElncRNAs, 116 DEmiRNAs, and 3496 DEmRNAs were identified and mainly enriched in hormone secretion, metabolism signaling, metastatic and proliferative pathways. Among these differentially expressed genes, 16 mRNAs, six lncRNAs, and two miRNAs were associated with overall survival of patients with PCPG and sequentially enrolled in the ceRNA network. Two lncRNA-miRNA-mRNA regulatory axes were predicted: AP001486.2/hsa-miR-195-5p/RCAN3 and AP006333.2/hsa-miR-34a-5p/PTPRJ. The GSE19422 dataset and IHC analysis validated that mRNA and protein levels of RCAN3 and PTPRJ were upregulated in PCPG tissues compared with adjacent adrenal gland medulla tissues. Pan-Cancer data showed that the upregulated expression of RCAN3 and PTPRJ was associated with favorable overall survival and disease-free survival. CONCLUSION A regulatory lncRNA-miRNA-mRNA ceRNA network was successfully constructed and 24 prognostic biomarkers were identified for PCPG patients. These findings may contribute toward a better understanding of the biological mechanism of tumorigenesis and enable further evaluation of the prognosis of patients with PCPG.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Yijian Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Yanjun Zhong
- ICU Center, The Second Xiangya Hospital, Central South University, Hunan, Hunan410011, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
| |
Collapse
|
13
|
Deschepper FM, Zoppi R, Pirro M, Hensbergen PJ, Dall’Olio F, Kotsias M, Gardner RA, Spencer DI, Videira PA. L1CAM as an E-selectin Ligand in Colon Cancer. Int J Mol Sci 2020; 21:ijms21218286. [PMID: 33167483 PMCID: PMC7672641 DOI: 10.3390/ijms21218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.
Collapse
Affiliation(s)
- Fanny M. Deschepper
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Roberta Zoppi
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Fabio Dall’Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy;
| | - Maximillianos Kotsias
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Daniel I.R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Paula A. Videira
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
14
|
Song Y, Jiang K, Wang BM, Liu WT, Lin R. miR‑31 promotes tumorigenesis in ulcerative colitis‑associated neoplasia via downregulation of SATB2. Mol Med Rep 2020; 22:4801-4809. [PMID: 33173968 PMCID: PMC7646903 DOI: 10.3892/mmr.2020.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) features chronic, non-infectious inflammation of the colon. The risk of ulcerative colitis‑associated neoplasia (UCAN) increases in direct association with the duration of this disease. Whether miRNAs exert a regulatory effect on the pathogenesis of UCAN has remained to be elucidated. In the present study, differentially expressed genes (DEGs) and microRNAs (miRNAs/miRs) were identified using bioinformatics analysis of Gene Expression Omnibus datasets. Enrichment analyses were performed to determine the function of the DEGs. The target genes of key miRNAs were predicted using miRWalk. Validation of DEGs and miRNAs in patients with UC, UC with low‑grade dysplasia and UC with high‑grade dysplasia (UC‑HGD) was performed using reverse transcription‑quantitative PCR analysis. A total of 38 differentially expressed miRNAs and 307 mRNAs were identified from the profiles and miR‑31 was validated as being overexpressed in UCAN tissues, particularly in the UC‑HGD samples. Furthermore, special AT‑rich DNA‑binding protein 2 (SATB2) was validated as a target gene of miR‑31 and SATB2 expression was negatively correlated with miR‑31 expression. Therefore, miR‑31 is upregulated in UCAN and it may promote tumorigenesis through downregulation of SATB2.
Collapse
Affiliation(s)
- Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wen-Tian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
15
|
Artificial Bee Colony algorithm based on Dominance (ABCD) for a hybrid gene selection method. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
17
|
Sun Y, Li S, Yu W, Chen C, Liu T, Li L, Zhang D, Zhao Z, Gao J, Wang X, Shi D, Liu L. CD148 Serves as a Prognostic Marker of Gastric Cancer and Hinders Tumor Progression by Dephosphorylating EGFR. J Cancer 2020; 11:2667-2678. [PMID: 32201537 PMCID: PMC7065996 DOI: 10.7150/jca.40955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/24/2020] [Indexed: 01/06/2023] Open
Abstract
CD148 is a member of the receptor-type protein tyrosine phosphatase family encoded by the PTPRJ gene and has controversial impacts on cancers. In this study, we investigated the clinical significance of CD148 in gastric cancer and the possible mechanisms. Suppressed CD148 expression indicated adverse pathological features and poor outcomes in gastric cancer patients. CD148 overexpression impeded tumor proliferation, motility, and invasiveness, while CD148 knock-down or knockout promoted the ability of gastric cancer cells to grow and metastasize in vitro and in vivo. Mechanistically, CD148 negatively regulated EGFR phosphorylation of multiple tyrosine residues, including Y1173, Y1068, and Y1092, and remarkably inhibited downstream PI3K/AKT and MEK/ERK pathways. In silico analysis revealed that gene deletions or missense/truncated mutations of PTPRJ gene rarely occurred in gastric cancers. Instead, a 3' UTR-specific methylation might regulate CD148 expression, and the potential regulators were TET2 and TET3. Collectively, our results suggest that CD148 is a convincing prognostic marker as well as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Song Li
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lanbo Li
- Animal Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Di Zhang
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zeyi Zhao
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Wang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Duanbo Shi
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lian Liu
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
18
|
Liu X, Zhang H, Zhang B, Zhang X. Expression and Role of MicroRNA-663b in Childhood Acute Lymphocytic Leukemia and its Mechanism. Open Med (Wars) 2019; 14:863-871. [PMID: 31844676 PMCID: PMC6884921 DOI: 10.1515/med-2019-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies have shown that microRNAs (miRNAs) play a key role in various malignant tumors. MiR-663b has been found to have important roles in several cancers, however, the role of miR-663b in T cell acute lymphocytic leukemia (T-ALL) remains unclear. Therefore, we speculated that miR-663b might also play a crucial role in the development and process of T-ALL. In the present study, we found that miR-663b was up-regulated in the blood of children with T-ALL and T-ALL cell lines. TargetScan and dual luciferase reporter assay results showed that CD99 was a direct target of miR-663b. In order to further study the biological function of miR-663b in the development of T-ALL and to clarify its potential molecular mechanism, we detected the changes in proliferation, apoptosis, migration, and invasion of T-ALL cell line Jurkat before and after miR-663b inhibitor transfection. We found that miR-663b inhibitor inhibited Jurkat cell proliferation and induced apoptosis. In addition, miR-663b inhibitor repressed Jurkat cell migration and invasion. All these effects of miR-663b inhibitor on Jurkat cells were eliminated by CD99-silencing. These results have provided a new theoretical basis and strategy for the diagnosis and treatment of T-ALL.
Collapse
Affiliation(s)
- Xuehua Liu
- Pediatric blood and endocrine metabolism nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Haixia Zhang
- Pediatric blood and endocrine metabolism nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Baorong Zhang
- PICU nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaohong Zhang
- Department of neurotrauma surgery, The First Hospital of Jilin University, No. 71 Xinmin Street, Changchun 130021, China
| |
Collapse
|
19
|
Shao C, Yang F, Qin Z, Jing X, Shu Y, Shen H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis. BMC Cancer 2019; 19:1103. [PMID: 31727002 PMCID: PMC6854776 DOI: 10.1186/s12885-019-6297-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, a growing number of studies have reported the coorelation between miR-155 and the diagnosis and prognosis of lung cancer, but results of these researches were still controversial due to insufficient sample size. Thus, we carried out the systematic review and meta-analysis to figure out whether miR-155 could be a screening tool in the detection and prognosis of lung cancer. METHODS A meta-analysis of 13 articles with 19 studies was performed by retrieving the PubMed, Embase and Web of Science. We screened all correlated literaters until December 1st, 2018. For the diagnosis analysis of miR-155 in lung cancer, sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the ROC curve (AUC) were pooled to evaluate the accuracy of miRNA-155 in the diagnosis of lung cancer. For the prognosis analysis of miR-155 in lung cancer, the pooled HRs and 95% CIs of miR-155 for overall survival/disease free survival/progression-free survival (OS/DFS/PFS) were calculated. In addition, Subgroup and meta-regression analyses were performed to distinguish the potential sources of heterogeneity between studies. RESULTS For the diagnostic analysis of miR-155 in lung cancer, the pooled SEN and SPE were 0.82 (95% CI: 0.72-0.88) and 0.78 (95% CI: 0.71-0.84), respectively. Besides, the pooled PLR was 3.75 (95% CI: 2.76-5.10), NLR was 0.23 (95% CI: 0.15-0.37), DOR was 15.99 (95% CI: 8.11-31.52) and AUC was 0.87 (95% CI: 0.84-0.90), indicating a significant value of miR-155 in the lung cancer detection. For the prognostic analysis of miR-155 in lung cancer, up-regulated miRNA-155 expression was not significantly associated with a poor OS (pooled HR = 1.26, 95% CI: 0.66-2.40) or DFS/PFS (pooled HR = 1.28, 95% CI: 0.82-1.97). CONCLUSIONS The present meta-analysis demonstrated that miR-155 could be a potential biomarker for the detection of lung cancer but not an effective biomarker for predicting the outcomes of lung cancer. Furthermore, more well-designed researches with larger cohorts were warranted to confirm the value of miR-155 for the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chuchu Shao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinming Jing
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Feng Y, Zhang Y, Zhou D, Chen G, Li N. MicroRNAs, intestinal inflammatory and tumor. Bioorg Med Chem Lett 2019; 29:2051-2058. [PMID: 31213403 DOI: 10.1016/j.bmcl.2019.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the third most malignant tumor. Inflammatory bowel disease (IBD) can increase the risk of colorectal cancer. And colitis-associated cancer (CAC) is a CRC subtype, representing the inflammation-related colorectal cancer. For the past decades, we have known that ectopic microRNA (miRNA) expression was involved in the pathogenesis of IBD and CRC, playing a pivotal role in the progression of inflammation to colorectal cancer. Thus, this review provides the recent advances in altered human tissue-specific miRNAs that contribute to IBD, CRC and CAC pathogenesis, diagnosis and treatment. Meanwhile, the potential utilization of miRNAs as novel therapeutic targets for the prevention of CRC was also discussed.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuan Zhang
- Tianjin Vocational College of Bioengineering, Tianjin 300462, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
21
|
Tang XJ, Wang W, Hann SS. Interactions among lncRNAs, miRNAs and mRNA in colorectal cancer. Biochimie 2019; 163:58-72. [PMID: 31082429 DOI: 10.1016/j.biochi.2019.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are longer than 200 nts non-coding transcripts and have recently emerged as one of the largest and significantly diverse RNA families whereas microRNAs (miRNAs) are highly conserved short single-stranded ncRNAs (∼18-22 nucleotides). As families of small and long evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, while miRNAs regulate protein-coding gene expression mainly through mRNA degradation or silencing, These ncRNAs have been proved to be involved in multiple biological functions, such as proliferation, differentiation, migration, angiogenesis and apoptosis. Today, while majority of studies have focused on defining the regulatory functions of lncRNAs and miRNAs, limited information have now available for the mutual regulations of lncRNAs, miRNAs and mRNA. Thus, the underlying molecular mechanisms, in particularly the interactions among lncRNAs, miRNAs and mRNA in development, growth, metastasis and therapeutic potential of cancer still remain obscure. Colorectal cancer (CRC) is known as the third most common and fourth leading cancer death worldwide. Increasing evidence showed the close correlations among aberrant expressions of lncRNAs, miRNAs and the occurrence, development of CRC. This review summarize the potential links among these RNAs in following three areas: 1, The biogenesis and roles of miRNAs in CRC; 2, The biogenesis and functions of lncRNAs in CRC; 3, The interactions among lncRNAs, miRNAs and mRNA in tumorigensis, growth, progression, EMT formation, chemoradiotherapy resistance, and therapeutic potential in CRC. We believe that identifying diverging lncRNAs, miRNAs and relevant genes, their interactions and complex molecular regulatory networks will provide important clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for CRC. Further efforts are warranted to bring the promise of regulating their activities into clinical utilities.
Collapse
Affiliation(s)
- Xiao Juan Tang
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
22
|
Wang Z, Li K, Wang X, Huang W. MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics 2019; 14:494-503. [PMID: 30950329 PMCID: PMC6557561 DOI: 10.1080/15592294.2019.1600388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous study reported that miR-155-5p knockout mice were more resistant to herpes simplex virus type I (HSV-1) infection. However, the exact underlying molecular mechanism remains to be elucidated. Here, we demonstrated that HSV-1 infection upregulates miR-155-5p expression. By binding to the promoter of serine/arginine-rich splicing factor 2 (SRSF2), which is an important transcriptional activator of HSV-1 genes that was previously reported by our group, and altering the histone modification located near the transcription start site (TSS) of the SRSF2 gene, miR-155-5p promotes the transcription of the SRSF2 gene, ultimately increasing viral replication and viral gene expression. Our results provide insight for an understanding of the roles and molecular mechanism of miR-155-5p in HSV-1 replication and the epigenetic control of SRSF2 gene expression.
Collapse
Affiliation(s)
- Ziqiang Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , P.R. China.,b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Kun Li
- c Department of Nuclear Medicine , Qianfoshan Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Xiaoxia Wang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Weiren Huang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| |
Collapse
|
23
|
Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk. J Appl Genet 2019; 60:57-62. [PMID: 30661225 PMCID: PMC6373398 DOI: 10.1007/s13353-019-00481-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ, DEP1) is a tumour suppressor gene that negatively regulates such processes as angiogenesis, cell proliferation and migration and is one of the genes important for tumour development. Similar to other phosphatase genes, PTPRJ is also described as an oncogene. Among various genetic changes characteristic for this gene, single nucleotide polymorphisms (SNPs) constituting benign genetic variants that can modulate its function have been described. We focused on Gln276Pro and Arg326Gln missense polymorphisms and performed a meta-analysis using data from 2930 and 852 patients for Gln276Pro and Arg326Gln respectively in different cancers. A meta-analysis was performed based on five articles accessed via the PubMed and Research Gate databases. Our meta-analysis revealed that for Arg326Gln, the presence of the Arg (C) allele was associated with lower risk of some cancers, the strongest association was observed for colorectal cancer patients, and there was no association between Gln276Pro (G>T) polymorphism and cancer risk. The polymorphisms Arg326Gln and Gln276Pro of the PTPRJ gene are not associated with an increased risk of cancer except for the Arg326Gln polymorphism in colorectal cancer. Large-scale studies should be performed to verify the impact of this SNP on individual susceptibility to colorectal cancer for given individuals.
Collapse
|
24
|
Yang M, Chen J, Xu L, Shi X, Zhou X, An R, Wang X. A Network Pharmacology Approach to Uncover the Molecular Mechanisms of Herbal Formula Ban-Xia-Xie-Xin-Tang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4050714. [PMID: 30410554 PMCID: PMC6206573 DOI: 10.1155/2018/4050714] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Ban-Xia-Xie-Xin-Tang (BXXXT) is a classical formula from Shang-Han-Lun which is one of the earliest books of TCM clinical practice. In this work, we investigated the therapeutic mechanisms of BXXXT for the treatment of multiple diseases using a network pharmacology approach. Here three BXXXT representative diseases (colitis, diabetes mellitus, and gastric cancer) were discussed, and we focus on in silico methods that integrate drug-likeness screening, target prioritizing, and multilayer network extending. A total of 140 core targets and 72 representative compounds were finally identified to elucidate the pharmacology of BXXXT formula. After constructing multilayer networks, a good overlap between BXXXT nodes and disease nodes was observed at each level, and the network-based proximity analysis shows that the relevance between the formula targets and disease genes was significant according to the shortest path distance (SPD) and a random walk with restart (RWR) based scores for each disease. We found that there were 22 key pathways significantly associated with BXXXT, and the therapeutic effects of BXXXT were likely addressed by regulating a combination of targets in a modular pattern. Furthermore, the synergistic effects among BXXXT herbs were highlighted by elucidating the molecular mechanisms of individual herbs, and the traditional theory of "Jun-Chen-Zuo-Shi" of TCM formula was effectively interpreted from a network perspective. The proposed approach provides an effective strategy to uncover the mechanisms of action and combinatorial rules of BXXXT formula in a holistic manner.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Chen
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Liwen Xu
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Xiufeng Shi
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Rui An
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhong Wang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int J Mol Sci 2018; 19:ijms19092791. [PMID: 30227605 PMCID: PMC6164944 DOI: 10.3390/ijms19092791] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is responsible for one of the major cancer incidence and mortality worldwide. It is well known that MicroRNAs (miRNAs) play vital roles in maintaining the cell development and other physiological processes, as well as, the aberrant expression of numerous miRNAs involved in CRC progression. MiRNAs are a class of small, endogenous, non-coding, single-stranded RNAs that bind to the 3’-untranslated region (3′-UTR) complementary sequences of their target mRNA, resulting in mRNA degradation or inhibition of its translation as a post-transcriptional regulators. Moreover, miRNAs also can target the long non-coding RNA (lncRNA) to regulate the expression of its target genes involved in proliferation and metastasis of CRC. The functions of these dysregulated miRNAs appear to be context specific, with evidence of having a dual role in both oncogenes and tumor suppression depending on the cellular environment in which they are expressed. Therefore, the unique expression profiles of miRNAs relate to the diagnosis, prognosis, and therapeutic outcome in CRC. In this review, we focused on several oncogenic and tumor-suppressive miRNAs specific to CRC, and assess their functions to uncover the molecular mechanisms of tumor initiation and progression in CRC. These data promised that miRNAs can be used as early detection biomarkers and potential therapeutic target in CRC patients.
Collapse
|
26
|
Hu Y, Zhang X, Cui M, Su Z, Wang M, Liao Q, Zhao Y. Verification of candidate microRNA markers for parathyroid carcinoma. Endocrine 2018; 60:246-254. [PMID: 29453660 DOI: 10.1007/s12020-018-1551-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Parathyroid carcinoma (PCa) is a rare endocrine malignancy with poor prognosis and is often difficult to accurately diagnose both before and after surgery. Dysregulated microRNA (miRNA) levels have been identified in PCa using a limited number of samples. The aim of the present study was to verify a group of miRNA markers in a new series of samples to explore their potential significance in PCa diagnosis. METHODS A total of 58 tissue samples, including 17 PCa lesions and 41 sporadic parathyroid adenomas (PAds), were obtained from 56 primary hyperparathyroidism (pHPT) patients. Candidate miRNAs (miR-139-5p, miR-155-5p, miR-222-3p, miR-26b-5p, miR-296-5p, miR-30b-5p, miR-372-3p, miR-503-5p, miR-517c-3p, miR-7-5p, and miR-126-5p) were quantified by TaqMan real-time quantitative PCR assays. RESULTS Up-regulated miR-222 (p = 0.041) levels and down-regulated miR-139 (p = 0.003), miR-30b (p < 0.001), miR-517c (p = 0.038), and miR-126* (p = 0.002) levels were found in PCa relative to PAd. Binary logistic regression analysis showed that miR-139 and miR-30b were the best diagnostic markers. The combination of miR-139 and miR-30b yielded an area under the receiver operating characteristic curve of 0.888. Additionally, serum calcium (r s = -0.518, p < 0.001), intact parathyroid hormone (iPTH) (r s = -0.495, p < 0.001), and alkaline phosphatase (ALP) (r s = -0.523, p < 0.001) levels were negatively correlated with miR-30b levels. CONCLUSIONS miR-139, miR-222, miR-30b, miR-517c, and miR-126* were differentially expressed between PCa and PAd. The combined analysis of miR-139 and miR-30b may be used as a potential diagnostic strategy for distinguishing PCa from PAd.
Collapse
Affiliation(s)
- Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhe Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
27
|
Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY, Roehrl MH, Barrera-Saldaña HA. The dawn of the liquid biopsy in the fight against cancer. Oncotarget 2018; 9:2912-2922. [PMID: 29416824 PMCID: PMC5788692 DOI: 10.18632/oncotarget.23131] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer is a molecular disease associated with alterations in the genome, which, thanks to the highly improved sensitivity of mutation detection techniques, can be identified in cell-free DNA (cfDNA) circulating in blood, a method also called liquid biopsy. This is a non-invasive alternative to surgical biopsy and has the potential of revealing the molecular signature of tumors to aid in the individualization of treatments. In this review, we focus on cfDNA analysis, its advantages, and clinical applications employing genomic tools (NGS and dPCR) particularly in the field of oncology, and highlight its valuable contributions to early detection, prognosis, and prediction of treatment response.
Collapse
Affiliation(s)
- Irma G. Domínguez-Vigil
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Ana K. Moreno-Martínez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
- Genetics Laboratory, Vitagénesis, Monterrey, Nuevo León, México
| | | | - Michael H.A. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo A. Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
- TecSalud, Tecnológico de Monterrey, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
28
|
MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother 2017; 95:1759-1764. [DOI: 10.1016/j.biopha.2017.08.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
|
29
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|