1
|
Duan Y, Li WX, Wang Y, Zhao Y, Shen J, Deng CJ, Li Q, Chen R, Liu X, Zhang YL. Integrated Analysis of lncRNAs and mRNAs Identifies a Potential Driver lncRNA FENDRR in Lung Cancer in Xuanwei, China. Nutr Cancer 2020; 73:983-995. [PMID: 32590916 DOI: 10.1080/01635581.2020.1779323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study was to screen out potential driver long non-coding RNAs (lncRNAs) in lung cancer in Xuanwei (LCXW) differently expressed mRNAs and lncRNAs were detected by gene expression microarrays in 23 paired lung adenocarcinoma and adjacent tissues. Combined bioinformatics analysis was performed to identify potential driver lncRNAs and their potential regulatory relationships. Transcriptome and clinical data in TCGA-LUAD were used as comparison and validation dataset. The comparison of LCXW and TCGA-LUAD revealed significant differences in expression of some genes, signaling pathways affected by differentially expressed genes, and the 5-year survival rate of patients. We identified 14 consistently deregulated mRNAs and 5 lncRNAs as candidate genes, which affected multiple cancer-related pathways and influenced patients' overall survival. By combined bioinformatics analysis, we further identified a potential driver lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) and proposed its possible regulation mechanism. The low expression of FENDRR was positively correlated with Krüppel-like factor4 (KLF4), KLF4 down-regulation may loss the activation function of cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1C (CDKN1C) and the inhibition function of CyclinB1 (CCNB1), eventually cause excessive cell cycle activation and lead to lung cancer. This study revealed a potential FENDRR-KLF4-cell cycle regulation axis. These results lay an important foundation for further research on the pathogenesis of LCXW and identification of potential novel biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yong Duan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| | - Wen-Xing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| | - Ying Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| | - Jie Shen
- Second Department of Internal Medicine, Kunming Third People's Hospital, Kunming, China
| | - Cheng-Jun Deng
- Department of Gastroenterology, Kunming Children's Hospital, Kunming, China
| | - Qing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| | - Ran Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| | - Yan-Liang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Institute of Laboratory Diagnosis, Kunming, China.,Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, China
| |
Collapse
|
2
|
Chang CC, Liu TY, Lee YT, Chen YC, Yeh KT, Lee CC, Chen YL, Lin PC, Chang YS, Chan WL, Liu TC, Chang JG. Genome-wide analysis of lncRNAs in 3'-untranslated regions: CR933609 acts as a decoy to protect the INO80D gene. Int J Oncol 2018; 53:417-433. [PMID: 29750421 DOI: 10.3892/ijo.2018.4398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) have various functions, including chromatin remodeling and the regulation of gene expression at the transcriptional and post-transcriptional levels. However, few lncRNAs have been investigated comprehensively, with the majority being uncharacterized. In the present study, a bioinformatics pipeline was established to identify novel lncRNA sequences similar to the 3'-untranslated regions (3'‑UTRs) of protein-coding genes. These pairs of lncRNAs and coding genes contained the same microRNA (miRNA) target sites; the lncRNA CR933609 matched the 3'‑UTR of INO80 complex subunit D (INO80D) mRNA. The expression levels of CR933609 and INO80D were significantly decreased in non‑small cell lung cancer (NSCLC) and other cancer tissues. The expression levels of CR933609 and INO80D were decreased in CR933609-knockdown NSCLC cells, but only expression levels of INO80D decreased in INO80D knockdown cells. It was shown that there are independent promoters in CR933609 and INO80D. It was also found that the expression levels of INO80D were downregulated by endogenous miRNA‑5096 in A549 cells, but not in CR933609-overexpressing A549 cells. Furthermore, the lncRNA CR933609 acted as a decoy to protect INO80D from downregulation by miRNA‑5096 in NSCLC cells. A protocol was established to identify novel lncRNAs in the 3'‑UTR and the existence of novel lncRNAs was confirmed.
Collapse
Affiliation(s)
- Chun-Chi Chang
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Ya-Ting Lee
- Epigenome Research Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chien-Chin Lee
- Epigenome Research Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Ya-Ling Chen
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Pei-Chin Lin
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Sian Chang
- Department of Laboratory Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Wen-Ling Chan
- Epigenome Research Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Ta-Chih Liu
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
3
|
Li XX, Liang XJ, Zhou LY, Liu RJ, Bi W, Zhang S, Li SS, Yang WH, Chen ZC, Yang XM, Zhang PF. Analysis of Differential Expressions of Long Non-coding RNAs in Nasopharyngeal Carcinoma Using Next-generation Deep Sequencing. J Cancer 2018; 9:1943-1950. [PMID: 29896278 PMCID: PMC5995947 DOI: 10.7150/jca.23481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Little knowledge about long non-coding RNAs(lncRNAs) in nasopharyngeal carcinoma (NPC) has been acquired. Methods: Next-generation sequencing was applied in 7 cases of NPC tissues and 7 cases of normal tissues in nasopharynx. PLEX, CNCI and CPAT soft-wares were used to predict novel lncRNAs. Real-time Quantitative PCR (qPCR) further validated the data in 20 cases of NPC tissues and 14 cases of normal tissues. Then the cis-regulators and trans-regulators and potential biological functions together with pathways were predicted by Bioinformatics. Results: Totally, 4248 novel lncRNAs were found to be expressed in our samples. And 2192 lncRNAs and 23342 mRNAs were considered to be differentially expressed in NPC. Among the results, 306 lncRNAs and 4599 mRNAs were significantly up-regulated, whereas 204 lncRNAs and 2059 mRNAs were significantly down-regulated, respectively. Moreover, 62 lncRNAs trans-regulated genes were involved in Epstein-Barr virus (EBV) infection pathway in our study. Jun proto-oncogene (JUN), which was related to a cis-regulator lncRNA RP4-794H19.1, was enriched in cancers and involved in Tumor Necrosis Factor (TNF) signaling pathway, might play a key role in NPC. Conclusion: These findings broadened the lncRNAs landscape of NPC tissues and shed light on the roles of these lncRNAs, which might be conducive to the comprehensive management of NPC.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xu-Jun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liu-Ying Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rui-Jie Liu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Sai Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shi-Sheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Wen-Hui Yang
- International College, Guangdong University of Foreign Studies, Guangzhou, Guangdong, 510420, P.R. China
| | - Zhu-Chu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xin-Ming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Peng-Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|