1
|
Li X, Fang S, Wang S, Xie Y, Xia Y, Wang P, Hao Z, Xu S, Zhang Y. Hypoxia preconditioning of adipose stem cell-derived exosomes loaded in gelatin methacryloyl (GelMA) promote type H angiogenesis and osteoporotic fracture repair. J Nanobiotechnology 2024; 22:112. [PMID: 38491475 PMCID: PMC10943905 DOI: 10.1186/s12951-024-02342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
The challenges posed by delayed atrophic healing and nonunion stand as formidable obstacles in osteoporotic fracture treatment. The processes of type H angiogenesis and osteogenesis emerge as pivotal mechanisms during bone regeneration. Notably, the preconditioning of adipose-derived stem cell (ADSC) exosomes under hypoxic conditions has garnered attention for its potential to augment the secretion and functionality of these exosomes. In the present investigation, we embarked upon a comprehensive elucidation of the underlying mechanisms of hypo-ADSC-Exos within the milieu of osteoporotic bone regeneration. Our findings revealed that hypo-ADSC-Exos harboured a preeminent miRNA, namely, miR-21-5p, which emerged as the principal orchestrator of angiogenic effects. Through in vitro experiments, we demonstrated the capacity of hypo-ADSC-Exos to stimulate the proliferation, migration, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) via the mediation of miR-21-5p. The inhibition of miR-21-5p effectively attenuated the proangiogenic effects mediated by hypo-ADSC-Exos. Mechanistically, our investigation revealed that exosomal miR-21-5p emanating from hypo-ADSCs exerts its regulatory influence by targeting sprouly1 (SPRY1) within HUVECs, thereby facilitating the activation of the PI3K/AKT signalling pathway. Notably, knockdown of SPRY1 in HUVECs was found to potentiate PI3K/AKT activation and, concomitantly, HUVEC proliferation, migration, and angiogenesis. The culminating stage of our study involved a compelling in vivo demonstration wherein GelMA loaded with hypo-ADSC-Exos was validated to substantially enhance local type H angiogenesis and concomitant bone regeneration. This enhancement was unequivocally attributed to the exosomal modulation of SPRY1. In summary, our investigation offers a pioneering perspective on the potential utility of hypo-ADSC-Exos as readily available for osteoporotic fracture treatment.
Collapse
Affiliation(s)
- Xiaoqun Li
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Shuo Fang
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Shaohai Wang
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xie
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yan Xia
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Panfeng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Zichen Hao
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China.
| | - Yuntong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Navy Medical University, Shanghai, China.
| |
Collapse
|
2
|
Qiu B, Yang E, Zheng Y, Zhang H. Association between SPRY1 and TET3 in skin photoaging and natural aging mechanisms. J Cosmet Dermatol 2023. [PMID: 38054565 DOI: 10.1111/jocd.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND SPRY1 is associated with the invasiveness and prognosis of various tumors, and TET3 affects aging by regulating gene expression. AIMS We investigated the roles of SPRY1 and TET3 in natural skin aging, replicative aging, and photoaging, along with the effect of UVA on genome-wide DNA methylation in HaCaT cells. METHODS TET3 and SPRY1 expression were measured in the skin of patients of different age groups, as well as in vitro human skin, HaCaT cell replicative senescence, and HaCaT and HaCaT-siTET3 cell photoaging models. Senescence was verified using β-galactosidase staining, and DNA damage was detected using immunofluorescence staining for γ-H2A.X. 5-Methyl cytosine (5-mC) content in the genome was determined using ELISA. RESULTS SPRY1 expression increased with age, whereas TET3 expression decreased. Similarly, SPRY1 was upregulated and TET3 was downregulated with increasing cell passages. TET3-siRNA upregulated SPRY1 expression in HaCaT cells. UVA irradiation promoted HaCaT cell senescence and induced cellular DNA damage. SPRY1 was upregulated and TET3 was downregulated upon UVA irradiation. Genome-wide 5-mC content increased upon TET3 silencing and UVA irradiation, indicating a surge in overall methylation. CONCLUSIONS SPRY1 and TET3 are natural skin aging-related genes that counteract to regulate replicative aging and UVA-induced photoaging in HaCaT cells. The cell photoaging model may limit experimental bias caused by different exposure times of skin model samples.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Burns & Plastic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - E Yang
- Department of Burns & Plastic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yulian Zheng
- Department of Burns & Plastic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hengshu Zhang
- Department of Burns & Plastic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yang X, Yang C, Friesel RE, Liaw L. Sprouty1 has a protective role in atherogenesis and modifies the migratory and inflammatory phenotype of vascular smooth muscle cells. Atherosclerosis 2023; 373:17-28. [PMID: 37121163 PMCID: PMC10225353 DOI: 10.1016/j.atherosclerosis.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Sprouty1 (Spry1) regulates the differentiation of vascular smooth muscle cells (VSMC), and our aim was to determine its role in atherogenesis. A significant proportion of cells within atherosclerotic lesions are derived from migration and pathological adaptation of medial VSMC. METHODS We used global Spry1 null mouse, and Myh11-CreERT2, ROSA26-STOPfl/fl-tdTomato-Spry1fl/fl mice to allow for lineage tracing and conditional Spry1 deletion in VSMC. Atherosclerosis was induced by injection of a mutant form of mPCSK9D377Y-AAV followed by Western diet. Human aortic VSMC (hVSMC) with shRNA targeting of Spry1 were also analyzed. RESULTS Global loss of Spry1 increased inflammatory markers ICAM1 and Cox2 in VSMC. Conditional deletion of Spry1 in VSMC had no effect on early lesion development, despite increased Sca1high cells. After 26 weeks of Western diet, mice with VSMC deletion of Spry1 had increased plaque burden, with reduced collagen content and smooth muscle alpha actin (SMA) in the fibrous cap. Lineage tracing via tdTomato marking Cre-recombined cells indicated that VSMC with loss of Spry1 had decreased migration into the lesion, noted by decreased proportions of tdTomato+ and tdTomato+/SMA + cells. Loss-of-function of Spry1 in hVSMC increased mesenchymal and activation markers, including KLF4, PDGFRb, ICAM1, and Cox2. Loss of Spry1 enhanced the effects of PDGFBB and TNFa on hVSMC. CONCLUSIONS Loss of Spry1 in VSMC aggravated plaque formation at later stages, and increased markers of instability. Our results indicate that Spry1 suppresses the mesenchymal and inflammatory phenotype of VSMC, and its expression in VSMC is protective against chronic atherosclerotic disease.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA
| | - Robert E Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA.
| |
Collapse
|
4
|
Tong H, Liu X, Peng C, Shen B, Zhu Z. Silencing of KNTC1 inhibits hepatocellular carcinoma cells progression via suppressing PI3K/Akt pathway. Cell Signal 2023; 101:110498. [PMID: 36273753 DOI: 10.1016/j.cellsig.2022.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod-Zwilch-ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Our immunohistochemistry experiment showed that KNTC1 was highly expressed in hepatocellular carcinoma (HCC) tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, lentivirus delivered short hairpin RNA (shRNA) KNTC1 (Lv-shKNTC1) was applied to infect BEL-7404 and SK-HEP-1 to identify roles of KNTC1 on HCC. Lv-shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p-Akt, CCND1, CDK6 are all down-regulated in Lv-KNTC1 cells and the Lv-shKNTC1 tumor tissues of nude mice. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway. Further studies revealed that ZW10 is a pivotal protein that participates in KNTC1-induced regulation of PI3K/Akt signaling pathway. In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohui Liu
- CNRS-LIA124, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baiyong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhecheng Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Modulation of Vascular Smooth Muscle Cell Multiplication, Apoptosis, and Inflammatory Damage by miR-21 in Coronary Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6942699. [PMID: 34873417 PMCID: PMC8643245 DOI: 10.1155/2021/6942699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
This study is aimed at exploring the role and potential molecular mechanism of microRNA-21 (miR-21) in coronary heart disease (CHD). RT-qPCR analysis was conducted to detect the expression of miR-21, Sprouty 1 (SPRY1), and connexin 43 (CX43). The protein expression of SPRY1 and CX43 was measured by western blot. ELISA was performed for measuring inflammatory factors, including intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 beta (IL-1β). The target relationship between miR-21 and SPRY1 was determined by dual-luciferase reporter assay. Cell multiplication and apoptosis were detected using CCK-8 assay and flow cytometry analysis, respectively. Our results indicated that miR-21, CX43, and the level of inflammatory cytokines including ICAM-1 and IL-1β were upregulated, while SPRY1 was downregulated in blood samples from CHD patients compared with the controls. Besides, miR-21 directly targeted SRPY-1. miR-21 could suppress SPRY1 expression and enhance CX43 expression in VSMCs. Moreover, miR-21 accelerated cell multiplication and attenuated cell apoptosis in VSMCs. Collectively, these findings suggested that miR-21 could effectively elevate VSMC multiplication and repress apoptosis by targeting SPRY1 in CHD, providing a potential target for therapeutic strategy of CHD.
Collapse
|
6
|
Wu Y, Zhang K, Liu R, Zhang H, Chen D, Yu S, Chen W, Wan S, Zhang Y, Jia Z, Chen R, Ding F. MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging (Albany NY) 2020; 12:15436-15445. [PMID: 32634115 PMCID: PMC7467375 DOI: 10.18632/aging.103610] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
A variety of novel drugs and advanced therapeutic strategies have been developed for diabetic foot ulcers (DFUs); however, the clinical outcomes are unsatisfactory and the underlying mechanisms of DFU remain elusive. MicroRNAs (miRNA) regulate the pathological processes of many diseases. Fibroblasts are involved in each stage of wound healing, and the functions of fibroblasts may be regulated by miRNAs. In the present study, we found that the levels of miRNA-21-3p (miR-21-3p) were decreased in patients with diabetes as compared with those in the healthy control. Similarly, the level of miRNA-21-3p was decreased in fibroblasts that were stimulated with D-glucose as compared with that in the control fibroblasts. Furthermore, enhanced function was found in fibroblasts followed by the miR-21-3p agonist treatment, and a rapid wound healing process was achieved in the miR-21-3p agonist-treated mice. MiR-21-3p directly targeted protein sprout homolog 1 (SPRY1), and the miR-21-3p-regulated reduction in SPRY1 enhanced the function of fibroblasts and accelerated wound healing in vivo. These findings suggest that miR-21-3p may treat DFU by reducing SPRY1.
Collapse
Affiliation(s)
- Yaohong Wu
- Department of Orthopedics, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Kun Zhang
- Department of Orthopedics, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, Hubei, China
| | - Rong Liu
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hexing Zhang
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Dong Chen
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Shuangqi Yu
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Wei Chen
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Song Wan
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Yi Zhang
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rongchun Chen
- Department of Orthopedics, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Fan Ding
- Department of Orthopaedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| |
Collapse
|
7
|
Yang K, Wang C, Wei X, Ding S, Liu C, Tian F, Li F. Self-Illuminating Photodynamic Therapy with Enhanced Therapeutic Effect by Optimization of the Chemiluminescence Resonance Energy Transfer Step to the Photosensitizer. Bioconjug Chem 2020; 31:595-604. [PMID: 31830411 DOI: 10.1021/acs.bioconjchem.9b00740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major obstacles to the wider application of photodynamic therapy (PDT) are drawbacks of the current photosensitizers and the tissue penetration limit of the common outer light source. In the present study, the chemiluminescence (CL) from the luminol-H2O2-horseradish peroxidase reaction was explored as a potential inner light source for the intracellular activation of carbon dots (CDs)-based PDT system. To fully use the light and enhance the overall PDT yield, the nanocarrier of CDs, the light of CL, and the PDT agent chlorin e6 (Ce6) were carefully selected and designed to form an efficient and united system. Bright-yellow-emissive CDs (y-CDs) were synthesized through purposeful regulation of the absorption and emission spectra to enhance the overlapping areas in the chemiluminescence resonance energy transfer (CRET) and fluorescence resonance energy transfer (FRET) processes. Our results reflected CL-induced y-CDs-Ce6 system (10 μM) successfully generated reactive oxygen species (ROS, 35.93%), killed ∼90% SMMC-7721 cells in vitro, and significantly delayed tumor growth in vivo. On the basis of immunohistochemical observations of proliferating cell nuclear antigen (PCNA) and platelet/endothelial cell adhesion molecule-1 (PECAM-1 or CD31) results, we concluded that the CL-induced y-CDs-Ce6 system had excellent performance in cancer therapy. The enhanced therapeutic effect was ascribed to two pathways: a direct CRET process and another process of CRET with subsequent y-CD-mediated FRET (CRET-to-FRET).
Collapse
Affiliation(s)
- Kun Yang
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Chunlai Wang
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Xiaohui Wei
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Sheng Ding
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Changjun Liu
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China.,National Engineering Research Center for Biological Protective Equipment, Tianjin 300161, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Fan Li
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| |
Collapse
|
8
|
Cao A, Li X. Bilobalide protects H9c2 cell from oxygen-glucose-deprivation-caused damage through upregulation of miR-27a. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:2980-2988. [PMID: 31322008 DOI: 10.1080/21691401.2019.1640708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023]
Abstract
Background: Myocardial ischemia is a troublesome disease. Bilobalide possesses multiple biological functions. We researched the consequents of bilobalide in OGD-irritated H9c2 cells. Methods: OGD-stimulated H9c2 cells were treated by bilobalide, and/or transfected with miR-27a inhibitor or negative control. Use CCK-8 and flow cytometry to test cell activity and apoptosis, respectively. Luciferase activity experiment was to test targeting link between miR-27a and Tmub1. Levels of cell-cycle and apoptosis relative proteins and phosphorylation of PI3K/AKT and Wnt/β-catenin related proteins were detected through western blot. Results: OGD stimulation reduced cell activity and negatively regulated the expression of CDK4, CDK6 and CyclinD1. Cell apoptosis was increased and its related proteins were affected by OGD. Bilobalide administration reversed all the results above caused by OGD. OGD negatively regulated miR-27a while bilobalide upregulated miR-27a. miR-27a's target gene was Tmub1. The protection consequents of bilobalide were suppressed when cells were transfected with a miR-27a inhibitor that cell activity was reduced and apoptosis was raised. Attenuation in the phosphorylation level of PI3K, AKT and β-catenin by OGD was reversed by bilobalide, whereas there were opposite results after transfected with miR-27a inhibitor. Conclusion: Bilobalide relieved OGD-caused H9c2 cell damage, raising cell activity and attenuating apoptosis via upregulating miR-27a and activating of PI3K/AKT and Wnt/β-catenin signal pathway. Highlights Bilobalide alleviates OGD-induced H9c2 cell injury. Bilobalide upregulates miR-27a expression in OGD-stimulated H9c2 cells. Bilobalide alleviates cell injury by upregulation of miR-27a. Bilobalide actuates PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Ailin Cao
- a Department of Cardiology, Affiliated Hospital of Jining Medical University , Jining , China
| | - Xiangting Li
- a Department of Cardiology, Affiliated Hospital of Jining Medical University , Jining , China
| |
Collapse
|
9
|
Gao J, Kang M, Han Y, Zhang T, Jin H, Kang C. RETRACTED: Ginkgolides B alleviates hypoxia-induced PC-12 cell injury by up-regulation of PLK1. Biomed Pharmacother 2019; 115:108885. [PMID: 31029888 DOI: 10.1016/j.biopha.2019.108885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief as panels within Figures 2D and 5D appear similar to each other. Given the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request.
Collapse
Affiliation(s)
- Jian Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Mingyang Kang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yingying Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Tuo Zhang
- Northeast Normal University, Changchun, 130024, China
| | - Hui Jin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
10
|
Erratum. J Cell Biochem 2019. [DOI: 10.1002/jcb.28547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Leng X, Shang J, Gao D, Wu J. Low-intensity pulsed ultrasound promotes proliferation and migration of HaCaT keratinocytes through the PI3K/AKT and JNK pathways. ACTA ACUST UNITED AC 2018; 51:e7862. [PMID: 30365726 PMCID: PMC6207286 DOI: 10.1590/1414-431x20187862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Xiaoyan Leng
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jing Shang
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Danhui Gao
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jiang Wu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|