1
|
Ragni E, Papait A, Taiana MM, De Luca P, Grieco G, Vertua E, Romele P, Colombo C, Silini AR, Parolini O, de Girolamo L. Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications. Regen Ther 2025; 28:481-497. [PMID: 39980717 PMCID: PMC11840939 DOI: 10.1016/j.reth.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) gained attention for their anti-inflammatory and trophic properties, with musculoskeletal diseases and osteoarthritis (OA) being among the most studied conditions. Alongside cells, their released factors and extracellular vesicles (EVs), overall termed "secretome", are actively sifted being envisioned as the main therapeutic actors. In addition to standard supplementation given by foetal bovine serum (FBS) or human platelet lysate (hPL), new good manufacturing practice (GMP)-compliant serum/xeno (S/X)-free media formulations have been proposed, although their influence on MSCs phenotype and potential is scarcely described. The aim of this study is therefore to evaluate, in the OA context, the differences in secretome composition and potential after adipose-MSCs (ASCs) cultivation in both standard (FBS and hPL) and two next generation (S/X) GMP-ready supplements. Methods Immunophenotype and secretory ability at soluble protein and EV-related levels, including embedded miRNAs, were analysed in the secretomes by means of flow cytometry, nanoparticle tracking analysis, high throughput ELISA and qRT-PCR arrays. Secretomes effect was tested in in vitro models of chondrocytes, lymphocytes and monocytes to mimic the OA microenvironment. Results Within a conserved molecular signature, a divergent fingerprint emerged for ASCs' secretomes collected after expansion in standard FBS/hPL or next-generation S/X formulations. Regarding soluble factors, a less protective feature for those in the secretome collected after ASCs were cultured in S/X media emerged. Moreover, the overall message for EV-miRNAs was characterized by a preponderance of protective signals in FBS and hPL conditions in a context of general safeguard given by ASCs released molecules. This dichotomy was reflected on secretomes' potential in vitro, with expansion in hPL resulting in the most effective secretome for chondrocytes and in FBS for immune cells. Conclusions These data open the question about the implications from using new media for MSCs expansion for clinical application. Although the undeniable advantages for GMP compliant processes, this study results suggest that new media formulations would deserve a deep characterization to drive the choice of the most effective one tailored to each specific application.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Michela Maria Taiana
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Giulio Grieco
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Elsa Vertua
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Pietro Romele
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Cecilia Colombo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
2
|
Walters M, Skovgaard K, Heegaard PMH, Fang Y, Kharaz YA, Bundgaard L, Skovgaard LT, Jensen HE, Andersen PH, Peffers MJ, Jacobsen S. Identification and characterisation of temporal abundance of microRNAs in synovial fluid from an experimental equine model of osteoarthritis. Equine Vet J 2025. [PMID: 39775906 DOI: 10.1111/evj.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis. OBJECTIVES To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis. We hypothesised that the abundance of miRNA would change during disease progression. STUDY DESIGN In vivo experiments. METHODS RNA extracted from synovial fluid obtained sequentially (Day 0, 28 and 70) from nine horses with experimentally induced osteoarthritis was subjected to small RNA sequencing using the Illumina Hiseq 4000 sequencing platform. Differentially abundant miRNAs underwent further validation and mapping of temporal abundance (Day 0, 14, 17, 21, 28, 35, 42, 49, 56, 63 and 70 days after osteoarthritis induction) by microfluidic reverse transcription quantitative real-time PCR. Bioinformatic analyses were performed to predict potential biological associations and target genes of the differentially abundant microRNAs. RESULTS Small RNA sequencing revealed 61 differentially abundant microRNAs at an early osteoarthritis stage (Day 28), and subsequent reverse transcription quantitative real-time PCR analysis validated 20 of these. Significant biological functions of the differentially abundant microRNAs were apoptosis, necrosis, cell proliferation and cell invasion. Following validation, four microRNAs (miRNA-199b-3p, miRNA-139-5p, miRNA-1839 and miRNA-151-5p) were detected in more than 50% of the synovial fluid samples and had higher abundance in osteoarthritic than in control joints. MAIN LIMITATIONS Limited sample size. CONCLUSION This is the first study to determine longitudinal changes in synovial fluid microRNA abundance in an equine model of osteoarthritis. Larger studies are needed in naturally occurring osteoarthritis to interrogate putative changes identified by this study.
Collapse
Affiliation(s)
- Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yalda A Kharaz
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lene T Skovgaard
- Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pia H Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
3
|
Jiang Y, Lu Y, Xu H, Hu Z, Du R, Zhou Y, Deng Q, Wang X, Liu Y, Wang Y. miR-206a-3p suppresses the proliferation and differentiation of chicken chondrocytes in tibial dyschondroplasia by targeting BMP6. Poult Sci 2024; 103:103534. [PMID: 38401226 PMCID: PMC10906518 DOI: 10.1016/j.psj.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024] Open
Abstract
The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.
Collapse
Affiliation(s)
- Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Deng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Ragni E, Perucca Orfei C, de Girolamo L. Secreted Factors and Extracellular Vesicles Account for the Immunomodulatory and Tissue Regenerative Properties of Bone-Marrow-Derived Mesenchymal Stromal Cells for Osteoarthritis. Cells 2022; 11:3501. [PMID: 36359897 PMCID: PMC9658264 DOI: 10.3390/cells11213501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/28/2023] Open
Abstract
Bone-marrow-derived mesenchymal stromal cells (BMSCs) showed therapeutic potential in the treatment of musculoskeletal diseases, including osteoarthritis (OA). Their soluble mediators and extracellular vesicles (EVs), which make up the secretome, suppress immune response, attenuate inflammation and promote cartilage repair. EVs, as well as the whole secretome, have been investigated as cell free approaches for OA although, to date, a disease-tailored molecular fingerprint is missing. In this study, soluble mediators and miRNAs were sifted in the BMSCs' secretome and EVs, respectively, and analyzed in the frame of cell types and factors involved in OA. The majority of identified molecules repress the activation of immune cells and the production of OA-related inflammatory mediators, as well as promote cartilage protection by acting on both chondrocytes homeostasis and extracellular matrix-degrading enzymes. These data provide the molecular ground for the therapeutic potential of BMSCs for regenerative applications for OA and support the use of secretome or EVs as cell-free applications in joint diseases.
Collapse
|
6
|
Ke C, Li H, Yang D, Ying H, Zhu H, Wang J, Xu J, Wang L. Melatonin Attenuates the Progression of Osteoarthritis in Rats by Inhibiting Inflammation and Related Oxidative Stress on the Surface of Knee Cartilage. Orthop Surg 2022; 14:2230-2237. [PMID: 35894841 PMCID: PMC9483081 DOI: 10.1111/os.13408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the correlation between melatonin and osteoarthritis (OA) in rats. To explore the relevant mechanisms in the occurrence and development of osteoarthritis in rats, and to further understand the disease of osteoarthritis. Methods Forty healthy 6‐month‐old male SD rats were randomly divided into two groups: sham and drug intervention groups. Pre‐OA modeling, enzyme‐linked immunosorbent assay was employed to detect the levels of IL‐1β, IL‐6, COX‐2, and melatonin in the serum of the rats in each group. For OA modeling, we administered an injection of papain into the knee cavity of all rats. The levels of IL‐1β, IL‐6, and COX‐2 in the serum of rats in each group were detected 2 weeks after the modeling. Additionally, 2 weeks after the modeling, the rats in the drug intervention group were intraperitoneally injected with melatonin antagonists. The rats in the sham group were intraperitoneally injected with normal saline for 2 weeks. The levels of IL‐1β, IL‐6, and COX‐2 in the serum of each group were measured at the second, third, and fourth weeks after the drug intervention, and the levels of melatonin in the serum were measured at the second week after the drug intervention. Finally, the rats were euthanized by cervical dislocation, and pathological sections were collected from the knee joint to observe the pathological tissue changes under a microscope, and Mankin score was determined. The independent samples t‐test method was used for analysis. Results The imaging examination after the drug intervention showed that the modeling of knee osteoarthritis in rats was successful. In the pathological findings, HE staining showed a legible cartilage structure of each layer, with cartilage proliferation and partial cartilage tearing to the radial layer. The tide line was intact; toluidine blue staining revealed more obvious changes. The differences among the mean values of IL‐6, IL‐1β, and COX‐2 measured in each period were statistically significant (t = 5.50, p < 0.05). The measured mean values of IL‐6, IL‐1β, and COX‐2 revealed statistically significant differences among the groups (t = 2.01, p < 0.05). The intergroup comparison of the Mankin scores in each period showed statistically significant differences. Conclusion Melatonin may inhibit inflammation and associated oxidative stress on the surface of knee cartilage. It may be related to the repair and regeneration of articular surface cartilage during the development of OA in the rat knee joint.
Collapse
Affiliation(s)
- Chenghui Ke
- Department of Orthopaedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyun Li
- Department of Anesthesiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Yang
- Department of Orthopaedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ying
- Department of Orthopaedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, China
| | - Jian Wang
- Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Orthopaedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
8
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
9
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
10
|
The Interaction between microRNAs and the Wnt/β-Catenin Signaling Pathway in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22189887. [PMID: 34576049 PMCID: PMC8470786 DOI: 10.3390/ijms22189887] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.
Collapse
|
11
|
Ragni E, Colombini A, Viganò M, Libonati F, Perucca Orfei C, Zagra L, de Girolamo L. Cartilage Protective and Immunomodulatory Features of Osteoarthritis Synovial Fluid-Treated Adipose-Derived Mesenchymal Stem Cells Secreted Factors and Extracellular Vesicles-Embedded miRNAs. Cells 2021; 10:cells10051072. [PMID: 33946524 PMCID: PMC8147187 DOI: 10.3390/cells10051072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Intra-articular administration of adipose-derived mesenchymal stem cells (ASCs), either in vitro expanded or within adipose tissue-based products obtained at point-of-care, has gained popularity as innovative regenerative medicine approach for osteoarthritis (OA) treatment. ASCs can stimulate tissue repair and immunomodulation through paracrine factors, both soluble and extracellular vesicles (EV) embedded, collectively defining the secretome. Interaction with the degenerative/inflamed environment is a crucial factor in understanding the finely tuned molecular message but, to date, the majority of reports have described ASC-secretome features in resting conditions or under chemical stimuli far from the in vivo environment of degenerated OA joints. In this report, the secretory profile of ASCs treated with native synovial fluid from OA patients was evaluated, sifting 200 soluble factors and 754 EV-embedded miRNAs. Fifty-eight factors and 223 EV-miRNAs were identified, and discussed in the frame of cartilage and immune cell homeostasis. Bioinformatics gave a molecular basis for M2 macrophage polarization, T cell proliferation inhibition and T reg expansion enhancement, as well as cartilage protection, further confirmed in an in vitro model of OA chondrocytes. Moreover, a strong influence on immune cell chemotaxis emerged. In conclusion, obtained molecular data support the regenerative and immunomodulatory properties of ASCs when interacting with osteoarthritic joint environment.
Collapse
Affiliation(s)
- Enrico Ragni
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
| | - Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
| | - Marco Viganò
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
| | - Francesca Libonati
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy;
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, I-20161 Milano, Italy; (E.R.); (A.C.); (M.V.); (F.L.); (C.P.O.)
- Correspondence: ; Tel.: +39-02-6621-4067
| |
Collapse
|
12
|
Wątroba S, Wiśniowski T, Bryda J, Kurzepa J. Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Summary
The human respiratory system appears as an outgrowth from the ventral wall of the primary foregut and its development includes a series of subsequent processes, dependent on the interactions between endothelial cells, respiratory epithelium and extracellular matrix (ECM). These interactions determine the acquisition of normal structural and functional features of the newly created tissues. The essential role in the morphogenesis of the respiratory system is performed by matrix metalloproteinases (MMPs). MMPs are endopeptidases containing zinc ion in their active center, necessary for the processes of hydrolysis of peptide bonds of substrates. The production of MMPs takes place in most connective tissue cells, leukocytes, macrophages, vascular endothelial cells as well as in neurons, glial cells and in tumor cells. Like other proteolytic enzymes, MMPs are produced and secreted in the form of inactive pro-enzymes, and their activation occurs in the extracellular space. MMPs perform both physiological and pathological functions during tissue modeling and their role in embryogenesis is based on the regulation of angiogenesis processes, stroma formation and cells migration. This article aims to characterize, discuss and demonstrate the activity and the role of MMPs in the subsequent stages of respiratory development.
Collapse
Affiliation(s)
- Sławomir Wątroba
- Department of Neonatology and Neonatal Intensive Care Unit , Independent Public Healthcare , Puławy , Poland
| | - Tomasz Wiśniowski
- Department of Urology and Urological Oncology , St. John of God Independent Public Provincial Hospital , Lublin , Poland
| | - Jarosław Bryda
- Department of Veterinary Hygiene , Voivodship Veterinary Inspectorate , Lublin , Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry , Medical University , Lublin , Poland
| |
Collapse
|
13
|
Castanheira C, Balaskas P, Falls C, Ashraf-Kharaz Y, Clegg P, Burke K, Fang Y, Dyer P, Welting TJM, Peffers MJ. Equine synovial fluid small non-coding RNA signatures in early osteoarthritis. BMC Vet Res 2021; 17:26. [PMID: 33422071 PMCID: PMC7796526 DOI: 10.1186/s12917-020-02707-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis remains one of the greatest causes of morbidity and mortality in the equine population. The inability to detect pre-clinical changes in osteoarthritis has been a significant impediment to the development of effective therapies against this disease. Synovial fluid represents a potential source of disease-specific small non-coding RNAs (sncRNAs) that could aid in the understanding of the pathogenesis of osteoarthritis. We hypothesised that early stages of osteoarthritis would alter the expression of sncRNAs, facilitating the understanding of the underlying pathogenesis and potentially provide early biomarkers. METHODS Small RNA sequencing was performed using synovial fluid from the metacarpophalangeal joints of both control and early osteoarthritic horses. A group of differentially expressed sncRNAs was selected for further validation through qRT-PCR using an independent cohort of synovial fluid samples from control and early osteoarthritic horses. Bioinformatic analysis was performed in order to identify putative targets of the differentially expressed microRNAs and to explore potential associations with specific biological processes. RESULTS Results revealed 22 differentially expressed sncRNAs including 13 microRNAs; miR-10a, miR-223, let7a, miR-99a, miR-23b, miR-378, miR-143 (and six novel microRNAs), four small nuclear RNAs; U2, U5, U11, U12, three small nucleolar RNAs; U13, snoR38, snord96, and one small cajal body-specific RNA; scarna3. Five sncRNAs were validated; miR-223 was significantly reduced in early osteoarthritis and miR-23b, let-7a-2, snord96A and snord13 were significantly upregulated. Significant cellular actions deduced by the differentially expressed microRNAs included apoptosis (P < 0.0003), necrosis (P < 0.0009), autophagy (P < 0.0007) and inflammation (P < 0.00001). A conservatively filtered list of 57 messenger RNA targets was obtained; the top biological processes associated were regulation of cell population proliferation (P < 0.000001), cellular response to chemical stimulus (P < 0.000001) and cell surface receptor signalling pathway (P < 0.000001). CONCLUSIONS Synovial fluid sncRNAs may be used as molecular biomarkers for early disease in equine osteoarthritic joints. The biological processes they regulate may play an important role in understanding early osteoarthritis pathogenesis. Characterising these dynamic molecular changes could provide novel insights on the process and mechanism of early osteoarthritis development and is critical for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Catarina Castanheira
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Panagiotis Balaskas
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Charlotte Falls
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Yalda Ashraf-Kharaz
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Peter Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Kim Burke
- Institute of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip Dyer
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L7 3EA UK
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, AZ 6202 The Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| |
Collapse
|
14
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. J Orthop Surg Res 2021; 16:8. [PMID: 33407721 PMCID: PMC7788833 DOI: 10.1186/s13018-020-02148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
16
|
Chen Q, Luo H, Zhou C, Yu H, Yao S, Fu F, Seeley R, Ji X, Yang Y, Chen P, Jin H, Tong P, Chen D, Wu C, Du W, Ruan H. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS One 2020; 15:e0243359. [PMID: 33320893 PMCID: PMC7737971 DOI: 10.1371/journal.pone.0243359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common arthropathy, characterized by progressive degeneration of the articular cartilage. Currently, there are no disease-modifying approaches for OA treatment. Adeno-associated virus (AAV)-mediated gene therapy has recently become a potential treatment for OA due to its exceptional characteristics; however, the tropism and transduction efficiency of different AAV serotypes to articular joints and the safety profile of AAV applications are still unknown. The present study aims to screen an ideal AAV serotype to efficiently transfer genes to arthritic cartilage. AAV vectors of different serotypes expressing eGFP protein were injected into the knee joint cavities of mice, with all joint tissues collected 30 days after AAV injection. The transduction efficiency of AAVs was quantified by assessing the fluorescent intensities of eGFP in the cartilage of knee joints. Structural and morphological changes were analyzed by toluidine blue staining. Changes to ECM metabolism and pyroptosis of chondrocytes were determined by immunohistochemical staining. Fluorescence analysis of eGFP showed that eGFP was expressed in the cartilage of knee joints injected with each AAV vector. Quantification of eGFP intensity indicated that AAV2, 7 and 8 had the highest transduction efficiencies. Both toluidine blue staining and Mankin score showed that AAV6 aggravated cartilage degeneration. The analysis of key molecules in ECM metabolism suggested that AAV5 and 7 significantly reduced collagen type II, while AAV9 increased ADAMTS-4 but decreased MMP-19. In addition, transduction with AAV2, 5, 7 and 8 had no obvious effect on pyroptosis of chondrocytes. Comprehensive score analysis also showed that AAV2 had the highest score in intra-articular gene transfer. Collectively, our findings point to AAV2 as the best AAV serotype candidate for gene transfer on arthritic cartilage, resulting in minimal impact to ECM metabolism and pyroptosis of chondrocytes.
Collapse
Affiliation(s)
- Quan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcong Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yanping Yang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peifeng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengliang Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- * E-mail: (HR); (WD); (CW)
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail: (HR); (WD); (CW)
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (HR); (WD); (CW)
| |
Collapse
|
17
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
18
|
Zhao X, Meng F, Hu S, Yang Z, Huang H, Pang R, Wen X, Kang Y, Zhang Z. The Synovium Attenuates Cartilage Degeneration in KOA through Activation of the Smad2/3-Runx1 Cascade and Chondrogenesis-related miRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:832-845. [PMID: 33230479 PMCID: PMC7658376 DOI: 10.1016/j.omtn.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Knee osteoarthritis (KOA) is a highly prevalent disabling joint disease in aged people. Progressive cartilage degradation is the hallmark of KOA, but its deeper mechanism remains unclear. Substantial evidence indicates the importance of the synovium for joint homeostasis. The present study aimed to determine whether the synovium regulates cartilage metabolism through chondrogenesis-related microRNAs (miRNAs) in the KOA microenvironment. Clinical sample testing and in vitro cell experiments screened out miR-455 and miR-210 as effective miRNAs. The levels of both were significantly reduced in KOA cartilage but increased in KOA synovial fluid compared with controls. We further revealed that transforming growth factor β1 (TGF-β1) can significantly upregulate miR-455 and miR-210 expression in synoviocytes. The upregulated miRNAs can be secreted into the extracellular environment and prevent cartilage degeneration. Through bioinformatics and in vitro experiments, we found that Runx1 can bind to the promoter regions of miR-455 and miR-210 and enhance their transcription in TGF-β1-treated synoviocytes. Collectively, our findings demonstrate a protective effect of the synovium against cartilage degeneration mediated by chondrogenesis-related miRNAs, which suggests that Runx1 is a potential target for KOA therapy.
Collapse
Affiliation(s)
- Xiaoyi Zhao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| | - Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| | - Shu Hu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Zibo Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| | - Hao Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Rui Pang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xingzhao Wen
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| | - Yan Kang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong 510080, PR China
| |
Collapse
|
19
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
20
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
21
|
Tokuhara CK, Santesso MR, Oliveira GSND, Ventura TMDS, Doyama JT, Zambuzzi WF, Oliveira RCD. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci 2019; 27:e20180596. [PMID: 31508793 DOI: 10.1590/1678-7757-2018-0596] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/22/2023] Open
Abstract
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Collapse
Affiliation(s)
- Cintia Kazuko Tokuhara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Mariana Rodrigues Santesso
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Gabriela Silva Neubern de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Talita Mendes da Silva Ventura
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Julio Toshimi Doyama
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Willian Fernando Zambuzzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| |
Collapse
|
22
|
Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, Li Y. Chondrocyte sheet in vivo cartilage regeneration technique using miR-193b-3p to target MMP16. Aging (Albany NY) 2019; 11:7070-7082. [PMID: 31492826 PMCID: PMC6756905 DOI: 10.18632/aging.102237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/22/2019] [Indexed: 04/12/2023]
Abstract
Stable cartilage regeneration has always been a challenge in both tissue engineering research and clinical practice. This study explored the feasibility of using a chondrocyte sheet technique stimulated by microRNAs to regenerate cartilage. We tested the involvement of hsa-miR-193b-3p in the microtia patient remnant auricular chondrocyte extracellular matrix (ECM). We observed in vitro chondrocyte proliferation, ECM synthesis, as well as the increase in the expression of type II collagen (COL2A1) and decrease in the expression of matrix metalloproteinase 16 (MMP16) of the chondrocyte sheets. COL2A1 deposition and MMP16 degradation of regenerative cartilage tissue were examined in vivo. A dual-luciferase reporter showed that the MMP16 gene was the direct target of miR-193b-3p. These results suggested that miR-193b-3p promotes chondrocyte sheet ECM synthesis by inhibiting MMP16. Since the evidence suggests that MMP16 is a critical regulator of chondrocyte ECM, this finding points the way towards a method that both strengthens the ECM and inhibits MMPs.
Collapse
Affiliation(s)
- Xia Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhicheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiyuan Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
23
|
McDermott BT, Peffers MJ, McDonagh B, Tew SR. Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1β. J Biol Chem 2019; 294:13027-13039. [PMID: 31300557 PMCID: PMC6721953 DOI: 10.1074/jbc.ra118.006865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/12/2019] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis is a chronic disease characterized by the loss of articular cartilage in synovial joints through a process of extracellular matrix destruction that is strongly associated with inflammatory stimuli. Chondrocytes undergo changes to their protein translational capacity during osteoarthritis, but a study of how disease-relevant signals affect chondrocyte protein translation at the transcriptomic level has not previously been performed. In this study, we describe how the inflammatory cytokine interleukin 1-β (IL-1β) rapidly affects protein translation in the chondrocytic cell line SW1353. Using ribosome profiling we demonstrate that IL-1β induced altered translation of inflammatory-associated transcripts such as NFKB1, TNFAIP2, MMP13, CCL2, and CCL7, as well as a number of ribosome-associated transcripts, through differential translation and the use of multiple open reading frames. Proteomic analysis of the cellular layer and the conditioned media of these cells identified changes in a number of the proteins that were differentially translated. Translationally regulated secreted proteins included a number of chemokines and cytokines, underlining the rapid, translationally mediated inflammatory cascade that is initiated by IL-1β. Although fewer cellular proteins were found to be regulated in both ribosome profiling and proteomic data sets, we did find increased levels of SOD2, indicative of redox changes within SW1353 cells being modulated at the translational level. In conclusion, we have produced combined ribosome profiling and proteomic data sets that provide a valuable resource in understanding the processes that occur during cytokine stimulation of chondrocytic cells.
Collapse
Affiliation(s)
- Benjamin T McDermott
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland (NUI), Galway H91 TK33, Ireland
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| |
Collapse
|
24
|
Xue H, Tu Y, Ma T, Wen T, Yang T, Xue L, Cai M, Wang F, Guan M. miR-93-5p attenuates IL-1β-induced chondrocyte apoptosis and cartilage degradation in osteoarthritis partially by targeting TCF4. Bone 2019; 123:129-136. [PMID: 30930294 DOI: 10.1016/j.bone.2019.03.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs, miRs) are frequently dysregulated in osteoarthritis (OA), but the role of specific miRNAs in OA remains unclear. In this study, we found that miR-93-5p is underexpressed in human and rat OA-affected cartilage (compared with normal cartilage) as well as in IL-1β-treated chondrocytes. Overexpression of miR-93-5p promoted chondrocyte viability, suppressed chondrocyte apoptosis, and maintained the balance between anabolic and catabolic factors of the extracellular matrix in vitro. Similarly, injection of a miR-93-5p-expressing lentivirus alleviated the destruction of articular cartilage in a rat model of OA (anterior cruciate ligament transection). Furthermore, TCF4 was identified as a direct target gene of miR-93-5p. miR-93-5p directly targeted the 3' untranslated region (3'-UTR) of TCF4 mRNA and repressed TCF4 expression. Overexpression of TCF4 attenuated the effects of miR-93-5p on chondrocyte apoptosis and functions. Finally, analyses of miR-93-5p and TCF4 in OA-affected cartilage tissues revealed that miR-93-5p expression inversely correlated with TCF4 expression. Altogether, these findings indicate that miR-93-5p slows OA progression partially by suppressing TCF4 expression, and this phenomenon may provide novel insights into the function of miRNA in OA.
Collapse
Affiliation(s)
- Huaming Xue
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Yihui Tu
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China.
| | - Tong Ma
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Tao Wen
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Tao Yang
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Long Xue
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Minwei Cai
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Fangxing Wang
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Mengying Guan
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
25
|
Ragni E, De Luca P, Perucca Orfei C, Colombini A, Viganò M, Lugano G, Bollati V, de Girolamo L. Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells 2019; 8:cells8040369. [PMID: 31018576 PMCID: PMC6523846 DOI: 10.3390/cells8040369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising tools for cell-based therapies due to their homing to injury sites, where they secrete bioactive factors such as cytokines, lipids, and nucleic acids, either free or conveyed within extracellular vesicles (EVs). Depending on the local environment, MSCs’ therapeutic value may be modulated, determining their fate and cell behavior. Inflammatory signals may induce critical changes on both the phenotype and secretory portfolio. Intriguingly, in animal models resembling joint diseases as osteoarthritis (OA), inflammatory priming enhanced the healing capacity of MSC-derived EVs. In this work, we selected miRNA reference genes (RGs) from the literature (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA), using EVs isolated from adipose-derived MSCs (ASCs) primed with IFNγ (iASCs). geNorm, NormFinder, BestKeeper, and ΔCt methods identified miR-26a-5p/16-5p as the most stable, while miR-103a-rp/425-5p performed poorly. Our results were validated on miRNAs involved in OA cartilage trophism. Only a proper normalization strategy reliably identified the differences between donors, a critical factor to empower the therapeutic value of future off-the-shelf MSC-EV isolates. In conclusion, the proposed pipeline increases the accuracy of MSC-EVs embedded miRNAs assessment, and help predicting donor variability for precision medicine approaches.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Gaia Lugano
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Valentina Bollati
- University of Milan, EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, I-20122 Milan, Italy.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| |
Collapse
|
26
|
Zhang C, Zhang Z, Chang Z, Mao G, Hu S, Zeng A, Fu M. miR-193b-5p regulates chondrocytes metabolism by directly targeting histone deacetylase 7 in interleukin-1β-induced osteoarthritis. J Cell Biochem 2019; 120:12775-12784. [PMID: 30854734 DOI: 10.1002/jcb.28545] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3'-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3'UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.
Collapse
Affiliation(s)
- Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongkun Chang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guping Mao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Hu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anyu Zeng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Endisha H, Rockel J, Jurisica I, Kapoor M. The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets. JCI Insight 2018; 3:121630. [PMID: 30185670 DOI: 10.1172/jci.insight.121630] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The disabling degenerative disease osteoarthritis (OA) is prevalent among the global population. Articular cartilage degeneration is a central feature of OA; therefore, a better understanding of the mechanisms that maintain cartilage homeostasis is vital for developing effective therapeutic interventions. MicroRNAs (miRs) modulate cell signaling pathways and various processes in articular cartilage via posttranscriptional repression of target genes. As dysregulated miRs frequently alter the homeostasis of articular cartilage, modulating select miRs presents a potential therapeutic opportunity for OA. Here, we review key miRs that have been shown to modulate cartilage-protective or -destructive mechanisms and signaling pathways. Additionally, we use an integrative computational biology approach to provide insight into predicted miR gene targets that may contribute to OA pathogenesis, and highlight the complexity of miR signaling in OA by generating both unique and overlapping gene targets of miRs that mediate protective or destructive effects. Early OA detection would enable effective prevention; thus, miRs are being explored as diagnostic biomarkers. We discuss these ongoing efforts and the applicability of miR mimics and antisense inhibitors as potential OA therapeutics.
Collapse
Affiliation(s)
- Helal Endisha
- Arthritis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Jason Rockel
- Arthritis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Arthritis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Arthritis Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Meng F, Li Z, Zhang Z, Yang Z, Kang Y, Zhao X, Long D, Hu S, Gu M, He S, Wu P, Chang Z, He A, Liao W. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics 2018; 8:2862-2883. [PMID: 29774080 PMCID: PMC5957014 DOI: 10.7150/thno.23547] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured. Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3'-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1β-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects. Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Aishan He
- Department of Joint Surgery, First Affiliated Hospital of SunYat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of SunYat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|