1
|
Zhao C, Miao J, Sun R, Liang R, Chen W, Gao Y, Wang X, Han S, Zhao W, Lei T, Huang C. MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer. Aging (Albany NY) 2022; 14:5878-5894. [PMID: 35876658 PMCID: PMC9365560 DOI: 10.18632/aging.204190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related deaths worldwide due to the lack of specific biomarkers for the early diagnosis and universal accepted therapy for advanced GC. Lower levels of miR-5701 were found in the GC tissue from the online sequencing data and confirmed in the GC tissues and GC cell lines. Overexpression of miR-5701 inhibited the proliferation and migration of GC cells and promoted the apoptosis of these cells. Bioinformatics analyses and luciferase assay showed that miR-5701 targeted FGFR2, which acted as an oncogene in GC. Nude mice with GC cells overexpressing miR-5701 exhibited smaller tumor sizes and less lung metastases. The miR-5701 expression was directly, transcriptionally inhibited by MBD1 together with HDAC3 by binding together to form a complex. Knocked down MBD1 or HDAC3 increased the miR-5701 expression. These results indicated the potential use of exogenously administered miR-5701 or agents that elevated endogenous miR-5701 to inhibit GC, improving the prognosis of patients with GC.
Collapse
Affiliation(s)
- Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, Shaanxi Province, P.R. China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People’s Armed Police Force, Xi’an 710054, Shaanxi Province, P.R. China
| | - Wenhu Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang Province, P.R. China
| | - Yi Gao
- Department of Cell Biology and Genetics, Medical School of Yan’an University, Yan’an 716000, Shaanxi Province, P.R. China
| | - Xiaofei Wang
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| | - Shuiping Han
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Wenbao Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Ting Lei
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Chen Huang
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| |
Collapse
|
2
|
Jiang L, Zhou X, Xu K, Hu P, Bao J, Li J, Zhu J, Wu L. miR-7/EGFR/MEGF9 axis regulates cartilage degradation in osteoarthritis via PI3K/AKT/mTOR signaling pathway. Bioengineered 2021; 12:8622-8634. [PMID: 34629037 PMCID: PMC8806962 DOI: 10.1080/21655979.2021.1988362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease in middle-aged and elderly people. Our previous study has proved that microRNA-7 (miR-7) exacerbated the OA process. This study was aimed to explore the downstream genes and mechanism regulated by miR-7 to affect OA. Multiple EGF-like-domains 9 (MEGF9) was the predicted target of miR-7 by databases. Luciferase report experiment results confirmed that MEGF9 could bind to miR-7. Among the 10 collected pairs of OA and healthy samples, the expression levels of miR-7 and MEGF9 were both up-regulated when compared with healthy subjects by qRT-PCR and immunohistochemistry (IHC). The increased MEGF9 levels were due to the interaction with epidermal growth factor receptor (EGFR) by co-immunoprecipitation. Evaluations found that upregulation of miR-7 or MEGF9 can increase the expression of EGFR, matrix metalloproteinase-13 (MMP-13) and a disintegrin like and metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5), so as to aggravate cartilage degradation. In addition, this effect induced by miR-7/EGFR/MEGF9 axis was by activation of PI3K/AKT signaling. The IHC and western blot assay results on OA model mice also demonstrated that miR-7/EGFR/MEGF9 axis regulated cartilage degradation in vivo. In summary, miR-7/EGFR/MEGF9 axis may perform a crucial function in the regulation of OA, providing potential for OA treatment.
Collapse
Affiliation(s)
- Lifeng Jiang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Hu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiapeng Bao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Junfeng Zhu
- Department of Orthopedics Surgery, Suichang Branch of the Second Affiliated Hospital, Zhejiang University School of Medicine (Suichang County People's Hospital in Zhejiang Province), Suichang, LiShui, China
| | - Lidong Wu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Zhao C, Mo L, Lei T, Yan Y, Han S, Miao J, Gao Y, Wang X, Zhao W, Huang C. miR-5701 promoted apoptosis of clear cell renal cell carcinoma cells by targeting phosphodiesterase-1B. Anticancer Drugs 2021; 32:855-863. [PMID: 33929990 DOI: 10.1097/cad.0000000000001078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing evidence has demonstrated that microRNAs play critical roles in malignant biological behaviors, including cancerogenesis, cancer progression and metastasis, through the regulation of target genes expression. As miR-5701 has recently been identified to play roles as tumor suppressor miRNA in the development of some kinds of cancers, in this study we sought to investigate the role of miR-5701 in clear cell renal cell carcinoma (ccRCC). Colony formation, cell apoptosis and proliferation assays were employed, and the results showed that miR-5701 inhibited proliferation and promoted apoptosis of ccRCC cells. Western blotting and dual-luciferase reporter assays were used to confirm that PDE1B is a new direct target of miR-5701. Furthermore, overexpression of PDE1B attenuated the effects of miR-5701, indicating that miR-5701 inhibited proliferation and promoted apoptosis of ccRCC cells via targeting PDE1B. Taken together, the data presented here indicate that t miR-5701 is a tumor suppressor in ccRCC and PDE1B is a new target of miR-5701.
Collapse
Affiliation(s)
- Changan Zhao
- Department of Pathology, School of Basic Medical Sciences
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Liping Mo
- Department of Pathology, School of Basic Medical Sciences
| | - Ting Lei
- Department of Pathology, School of Basic Medical Sciences
| | - Yan Yan
- Department of Pathology, The First Hospital of Xi'an
| | - Shuiping Han
- Department of Pathology, School of Basic Medical Sciences
| | - Jiyu Miao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Wenbao Zhao
- Department of Pathology, School of Basic Medical Sciences
| | - Chen Huang
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
4
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
5
|
Sperling R. Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194406. [PMID: 31323432 DOI: 10.1016/j.bbagrm.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Splicing and alternative splicing (AS), which occur in the endogenous spliceosome, play major roles in regulating gene expression, and defects in them are involved in numerous human diseases including cancer. Although the mechanism of the splicing reaction is well understood, the regulation of AS remains to be elucidated. A group of essential regulatory factors in gene expression are small non-coding RNAs (sncRNA): e.g. microRNA, mainly known for their inhibitory role in translation in the cytoplasm; and small nucleolar RNA, known for their role in methylating non-coding RNA in the nucleolus. Here I highlight a new aspect of sncRNAs found within the endogenous spliceosome. Assembled in non-canonical complexes and through different base pairing than their canonical ones, spliceosomal sncRNAs can potentially target different RNAs. Examples of spliceosomal sncRNAs regulating AS, regulating gene expression, and acting in a quality control of AS are reviewed, suggesting novel functions for spliceosomal sncRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
Rubio K, Dobersch S, Barreto G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer. FASEB J 2019; 33:5814-5822. [PMID: 30742773 DOI: 10.1096/fj.201802715r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eukaryotic cell nucleus consists of functionally specialized subcompartments. These nuclear subcompartments are biomolecular aggregates built of proteins, transcripts, and specific genome loci. The structure and function of each nuclear subcompartment are defined by the composition and dynamic interaction between these 3 components. The spatio-temporal localization of biochemical reactions into membraneless nuclear subcompartments can be achieved through liquid-liquid phase separation. Based on this organizing principle, nuclear subcompartments are droplet-like structures that adopt spherical shapes, flow, and fuse like liquids or gels. In the present review, we bring into the spotlight seminal works elucidating the functional interactions between scaffold proteins, noncoding RNAs, and genomic loci, thereby inducing liquid-liquid phase separation as an organizing principle for 3-dimensional nuclear architecture. We also discuss the implications in different cancer types as well as the potential use of this knowledge to develop novel therapeutic strategies against cancer.-Rubio, K., Dobersch, S., Barreto, G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer.
Collapse
Affiliation(s)
- Karla Rubio
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephanie Dobersch
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratoire Croissance, Réparation, et Régénération Tissulaires (CRRET), Centre National de la Recherche Scientifique (CNRS) Équipe de Recherche Labellisée (ERL) 9215, Université Paris Est Créteil, Créteil, France.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.,Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen-Marburg Lung Center (UGMLC), Giessen, Germany.,German Center of Lung Research, Giessen, Germany
| |
Collapse
|
7
|
Chen Q, Yang Z, Pan G, Ding H, Jiang D, Huang J, Liu W. Tumor suppressor miR-449a inhibits the development of gastric cancer via down-regulation of SGPL1. RSC Adv 2018; 8:26020-26028. [PMID: 35541941 PMCID: PMC9082876 DOI: 10.1039/c8ra02722f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/23/2018] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are known to participate in the regulation of many physiological and pathological processes, which can indirectly influence the development of malignant behaviors. Numerous studies have demonstrated that miR-449a plays important roles in human carcinogenesis. However, its precise functional and regulatory roles remain unclear. In this study, we mainly explored the functional role of miR-449a in gastric cancer (GC). The expression levels of miR-449a in 98 cases of GC tissues and cell lines were determined by qRT-PCR. The possible mechanisms of miR-449a in GC cells were explored by fluorescence reporter assay. miR-449a expression was significantly lower in GC tissues compared to matched para-carcinoma tissues and was associated with tumor differentiation. Furthermore, in vitro knockdown of miR-449a by siRNA significantly inhibited MKN-28 cell proliferation, migration and invasion as well as tumorigenesis via inducing G0/G1 arrest of GC cells. In addition, we identified SGPL1 as a target of miR-449a and demonstrated that miR-449a regulated SGPL1 expression via binding its 3′-UTR region. The experiments indicated that miR-449a functions as a novel tumor suppressor in GC and its anti-oncogenic activity may involve its inhibition of the target gene SGPL1. These findings suggested that miR-449a may be a promising candidate for the development of antitumor drugs targeting GC. MicroRNAs (miRNAs) are small noncoding RNAs that are known to participate in the regulation of many physiological and pathological processes, which can indirectly influence the development of malignant behaviors.![]()
Collapse
Affiliation(s)
- Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Zhen Yang
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Gaofeng Pan
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Hongjian Ding
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Daowen Jiang
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Jianfang Huang
- Department of Infection Diseases, The Fifth People's Hospital Affiliated to Fudan University Shanghai 201199 China
| | - Weiyan Liu
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| |
Collapse
|