1
|
Moura-Silva J, Tavares MPS, Almeida-Oliveira F, Majerowicz D. Diet supplementation with egg yolk powder fattens the beetle Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e22000. [PMID: 36656770 DOI: 10.1002/arch.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Insects have become essential models in studying human metabolic diseases, mainly due to their low maintenance cost and available tools. Both mutations and modified diets induce metabolic states similar to human obesity and diabetes. Here, we explore the effect of a high-calorie, high-fat diet on the metabolism of the beetle Tribolium castaneum. Supplementation of the wheat flour diet with powdered egg yolk for 3 weeks increased the total triacylglycerol and accelerated larval development. In addition, this diet increased the triacylglycerol levels of adult beetles. However, this egg yolk supplementation did not alter the larvae's total glucose levels or lipogenic capacity and ATP citrate lyase activity. The diet also did not change the expression profile of several lipid and carbohydrate metabolism genes and insulin-like peptides. Thus, we conclude that the diet supplemented with egg yolk induces increased fat without causing diabetes phenotypes, as seen in other hypercaloric diets in insects.
Collapse
Affiliation(s)
- Julia Moura-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P S Tavares
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Barreto Meichtry L, Silva da Silva G, Londero L, Munir Mustafa Dahleh M, Cardoso Bortolotto V, Machado Araujo S, Aparecida Musachio E, Trivisiol da Silva D, Emanuelli T, Ricardo Sigal Carriço M, Roehrs R, Petri Guerra G, Prigol M. Exposure to trans fat during the developmental period ofDrosophila melanogasteralters the composition of fatty acids in the head and induces depression-like behavior. Neuroscience 2023; 519:10-22. [PMID: 36933760 DOI: 10.1016/j.neuroscience.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
Collapse
Affiliation(s)
- Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Guilherme Silva da Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Larissa Londero
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Elize Aparecida Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Dariane Trivisiol da Silva
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Murilo Ricardo Sigal Carriço
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000.
| |
Collapse
|
3
|
Duarte T, Silva MDM, Michelotti P, Barbosa NBDV, Feltes BC, Dorn M, Rocha JBTD, Dalla Corte CL. The Drosophila melanogaster ACE2 ortholog genes are differently expressed in obesity/diabetes and aging models: Implications for COVID-19 pathology. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166551. [PMID: 36116726 PMCID: PMC9474972 DOI: 10.1016/j.bbadis.2022.166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The Spike glycoprotein of SARS-CoV-2, the virus responsible for coronavirus disease 2019, binds to its ACE2 receptor for internalization in the host cells. Elderly individuals or those with subjacent disorders, such as obesity and diabetes, are more susceptible to COVID-19 severity. Additionally, several SARS-CoV-2 variants appear to enhance the Spike-ACE2 interaction, which increases transmissibility and death. Considering that the fruit fly is a robust animal model in metabolic research and has two ACE2 orthologs, Ance and Acer, in this work, we studied the effects of two hypercaloric diets (HFD and HSD) and aging on ACE2 orthologs mRNA expression levels in Drosophila melanogaster. To complement our work, we analyzed the predicted binding affinity between the Spike protein with Ance and Acer. We show for the first time that Ance and Acer genes are differentially regulated and dependent on diet and age in adult flies. At the molecular level, Ance and Acer proteins exhibit the potential to bind to the Spike protein in different regions, as shown by a molecular docking approach. Acer, in particular, interacts with the Spike protein in the same region as in humans. Overall, we suggest that the D. melanogaster is a promising animal model for translational studies on COVID-19 associated risk factors and ACE2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mônica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nilda Berenice de Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Institute of Biosciences, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil
| | - Márcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; National Institute of Science and Technology - Forensic Science, 6681 Ipiranga Avenue, Porto Alegre, RS 90619-900, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
4
|
Kai Y, Gao J, Liu H, Wang Y, Tian C, Guo S, He L, Li M, Tian Z, Song X. Effects of IL-33 on 3T3-L1 cells and obese mice models induced by a high-fat diet. Int Immunopharmacol 2021; 101:108209. [PMID: 34624652 DOI: 10.1016/j.intimp.2021.108209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Obesity is a syndrome that attributes to many factors such as genetics, diet, lifestyle and environment, which includes an imbalance of immune regulation. IL-33, as a new member of the IL-1 family, is classically associated with type 2 immune responses. Here, IL-33 was investigated for its ability to optimize lipid aggregation and ameliorate the inflammatory response in obesity. In vitro experimental results showed that, compared with the induction group, the treatment with 30 ng/mL IL-33 displayed a reduction in the number of lipid droplets. The expression levels of AceCS1 and PPARγ also decreased in the 30 ng/mL IL-33 group compared to the induction group. For confirmation in vivo, three groups of C57BL/6 mice were treated for 14 weeks: mice in control were fed with a normal diet; mice in the HFD and IL-33 groups were fed with a high-fat diet (HFD) and with sterile PBS or recombinant IL-33, respectively. Liver, muscle, spleen and four types of adipose tissue, as well as serum, were collected for further testing. Our data demonstrated that after 4-week treatment with recombinant IL-33, metabolic parameters in mice were improved significantly (visceral fat weight, glucose and insulin tolerance, liver steatosis, expression of lipid synthesis index and inflammatory response). Moreover, IL-33 treatment regulated the original distribution of IL-33 among different tissues. Hence, IL-33 modulated lipid metabolism and inflammatory response in obesity, which would be a novel therapeutic target for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yue Kai
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China; School of Medicine, Xinxiang University, Henan Xinxiang 453003, China
| | - Jingtao Gao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Hu Liu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yubing Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Chenrui Tian
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ling He
- Department of ophthalmology, the 371 Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang 453003, China
| | - Min Li
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China
| | - Zhongwei Tian
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang 453003, China
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
5
|
Zhang J, Yu Z, Shen J, Vandenberg LN, Yin D. Influences of sex, rhythm and generation on the obesogenic potential of erythromycin to Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145315. [PMID: 33548709 DOI: 10.1016/j.scitotenv.2021.145315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are gaining attention due to their roles as emerging pollutants and environmental obesogens, yet several aspects between their environmental exposure and obesogenic influence on organisms remain poorly explored. Here, Drosophila melanogaster were exposed to erythromycin (ERY, 0.1 μg/L) for three consecutive generations (F1 to F3). Body weight, circadian rhythm (represented by eclosion timing) and lipid metabolism were measured. ERY increased the size of lipid droplets in larvae of all three generations. It modestly inhibited body weight in adults that abnormally eclosed in the morning (AM adults) in the F1 and F2 generations, and the inhibition was less in adults that eclosed in the afternoon (PM adults). In contrast, it stimulated body weight in F3 adults. Notably, ERY promoted morning eclosion of females. Combining the effects from F1 to F3, acyl-CoA oxidase (ACO) was commonly increased in AM female and male adults and also in PM female ones, while it was commonly decreased in PM male adults. Glucokinase (GCK) was commonly increased in both sexes of AM adults but decreased in PM male adults across generations. The IIS pathway showed a common up-regulation in the AM adults despite some differences between sexes, but it did not show any shared changes in the PM adults with dysrhythmia. The AMPK pathway was involved across generations without particular shared changes. Collectively, the effects of ERY on the key metabolites and enzymes in glucolipid metabolism and the genetic regulations depended on sex, rhythm and exposure generation.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Jiaying Shen
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Laura N Vandenberg
- University of Massachusetts - Amherst, School of Public Health and Health Sciences, Amherst, MA 01003, USA
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
6
|
Murashov AK, Pak ES, Lin C, Boykov IN, Buddo KA, Mar J, Bhat KM, Neufer PD. Preference and detrimental effects of high fat, sugar, and salt diet in wild-caught Drosophila simulans are reversed by flight exercise. FASEB Bioadv 2021; 3:49-64. [PMID: 33490883 PMCID: PMC7805546 DOI: 10.1096/fba.2020-00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
High saturated fat, sugar, and salt contents are a staple of a Western diet (WD), contributing to obesity, metabolic syndrome, and a plethora of other health risks. However, the combinatorial effects of these ingredients have not been fully evaluated. Here, using the wild-caught Drosophila simulans, we show that a diet enriched with saturated fat, sugar, and salt is more detrimental than each ingredient separately, resulting in a significantly decreased lifespan, locomotor activity, sleep, reproductive function, and mitochondrial function. These detrimental effects were more pronounced in female than in male flies. Adding regular flight exercise to flies on the WD markedly negated the adverse effects of a WD. At the molecular level, the WD significantly increased levels of triglycerides and caused mitochondrial dysfunction, while exercise counterbalanced these effects. Interestingly, fruit flies developed a preference for the WD after pre-exposure, which was averted by flight exercise. The results demonstrate that regular aerobic exercise can mitigate adverse dietary effects on fly mitochondrial function, physiology, and feeding behavior. Our data establish Drosophila simulans as a novel model of diet-exercise interaction that bears a strong similarity to the pathophysiology of obesity and eating disorders in humans.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Chien‐Te Lin
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ilya N. Boykov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Katherine A. Buddo
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Jordan Mar
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Krishna M. Bhat
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Peter Darrell Neufer
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| |
Collapse
|
7
|
de Aquino Silva D, Silva MRP, Guerra GP, do Sacramento M, Alves D, Prigol M. 7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108892. [PMID: 32931926 DOI: 10.1016/j.cbpc.2020.108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 01/03/2023]
Abstract
The goals of this work were to evaluate the effects produced by a hyperglycidic diet (HD) on Drosophila melanogaster and to verify the protective effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on this model. Adult flies were divided into eight groups of 50 flies each: (1) RD, (regular diet) (2) RD + 4-PSQ (25 μM), (3) HD 5%, (4) HD 10%, (5) HD 30% (6) HD 5% + 4-PSQ (25 μM), (7) HD 10% + 4-PSQ (25 μM) and (8) HD 30% + 4-PSQ (25 μM). Flies were exposed to a diet containing sucrose and or 4-PSQ for ten days, according to each group. At the end of treatment survival rate, longevity, hatch rate, food intake, glucose and triglyceride levels, as well as, some markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities, protein thiol (PSH) and non-protein levels (NPSH) and cell viability assays (Resazurin and MTT) were evaluated. It was observed that HD's consumption was associated with lower survival of the flies, lower longevity, and increased levels of glucose, triglycerides, TBARS and increased SOD activities and CAT activities. Treatment with 25 μM 4-PSQ increased the satiety of flies, increased survival, reduced glucose, triglyceride and TBARS levels, increased hatching, and normalized SOD and CAT activities. These results suggest that 25 μM 4-PSQ had a potential antioxidant effect and provided greater satiety by attenuating the effects of high HD consumption on this model.
Collapse
Affiliation(s)
- Daiane de Aquino Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
8
|
Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models. Int J Mol Sci 2020; 21:ijms21197209. [PMID: 33003580 PMCID: PMC7582321 DOI: 10.3390/ijms21197209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Gomisin N (GN) is lignin derived from Schisandra chinensis that has been reported to exhibit hepato-protective, anti-cancer, and anti-inflammatory effects. However, its role in whole-body energetic homeostasis remains unclear. In this study, we employed Drosophila melanogaster as a diet-induced obese model to elucidate the effects of GN on lipid and glucose metabolism by measuring climbing activity, triglyceride levels, and lifespan under a rearing condition of a high-fat diet (HFD) containing 20% coconut oil, with or without GN. Constant exposure of flies to an HFD resulted in increased body weight and decreased climbing activity, along with a shortened life span. Importantly, the administration of GN to HFD groups lowered their body weight and induced a specific upregulation of lipid storage droplet (Lsd)-2 and hormone-sensitive lipase (Hsl), in addition to improved lifespan. Importantly, GN in HFD groups appeared to downregulate heat shock protein Hsp90 family member (dGRP94), a key regulator of the endoplasmic reticulum stress response, which may also contribute to improved life span in the presence of GN. Taken together, these in vivo findings suggest that GN could serve as a useful agent for the prevention and treatment of obesity.
Collapse
|
9
|
Yu Z, Shen J, Li Z, Yao J, Li W, Xue L, Vandenberg LN, Yin D. Obesogenic Effect of Sulfamethoxazole on Drosophila melanogaster with Simultaneous Disturbances on Eclosion Rhythm, Glucolipid Metabolism, and Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5667-5675. [PMID: 32285665 DOI: 10.1021/acs.est.9b07889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotics have recently gained attention because they are emerging environmental pollutants with obesogenic properties. In this study, Drosophila melanogaster were exposed to sulfamethoxazole (SMX), a sulfonamide antibiotic, and the effects were measured on circadian rhythm (represented by the eclosion rhythm), lipid metabolism, and microbiota. Circadian rhythm disorder was considered due to its connection with lipid metabolism and microbiota in association with obesity. SMX decreased the proportion of adult flies that eclosed in the morning (AM adults) and increased the proportion of PM adults. Moreover, SMX increased the body weight of PM adults, indicating that SMX exposure caused dysrhythmia in eclosion together with obesity. In measurements of key metabolites and metabolic enzymes, SMX exposure stimulated 3 indices in AM adults and 10 indices in PM adults. In AMP-activated protein kinase and insulin/IGF-1 signaling pathways, SMX upregulated six genes in AM adults and nine genes in PM adults. Finally, microbiota analysis demonstrated that SMX increased the Firmicutes/Bacteroides ratios (F/B) by 79.6- and 5.8-fold compared to concurrent controls in AM and PM adults. Collectively, these results suggest that SMX showed obesogenic effects accompanied with dysrhythmia and disturbances in lipid metabolism and microbiota. Further studies on the intrinsic connection are needed.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, P. R. China
| | - Jiaying Shen
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jinmin Yao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Wenzhe Li
- College of Life Science and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Lei Xue
- College of Life Science and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts 01003, United States
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
Fuertes I, Jordão R, Piña B, Barata C. Time-dependent transcriptomic responses of Daphnia magna exposed to metabolic disruptors that enhanced storage lipid accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:99-108. [PMID: 30884398 DOI: 10.1016/j.envpol.2019.02.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
The analysis of lipid disruption in invertebrates is limited by our poor knowledge of their lipidomes and of the associated metabolic pathways. For example, the mechanism by which exposure of the crustacean Daphnia magna to tributyltin, juvenoids, or bisphenol A increase the accumulation of storage lipids into lipid droplets is largely unknown/presently unclear. Here we analyze transcriptome changes subsequent to this lipid accumulation effect induced by either the pesticide pyriproxyfen (a juvenoid agonist), the plasticizer bisphenol A, or the antifouling agent tributyltin. Changes in the whole transcriptome were assessed after 8 and 24 h of exposure, the period showing the greatest variation in storage lipid accumulation. The three compounds affected similarly to a total of 1388 genes (965 overexpressed and 423 underexpressed transcripts), but only after 24 h of exposure. In addition, 225 transcripts became up-regulated in samples exposed to tributyltin for both 8 h and 24 h. Using D. melanogaster functional annotation, we determined that upregulated genes were enriched in members of KEGG modules implicated in fatty acid, glycerophospholipid, and glycerolipid metabolic pathways, as well as in genes related to membrane constituents and to chitin and cuticle metabolic pathways. Conversely, down-regulated genes appeared mainly related to visual perception and to oocyte development signaling pathways. Many tributyltin specifically upregulated genes were related to neuro-active ligand receptor interaction signaling pathways. These changes were consistent with the phetotypic effects reported in this and in previous studies that exposure of D. magna to the tested compounds increased lipid accumulation and reduced egg quantity and quality.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Rita Jordão
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
11
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|