1
|
Higuchi T, Igarashi K, Miwa S, Kimura H, Hayashi K, Demura S, Morinaga S, Asano Y, Yamamoto N, Hornicek FJ, Tsuchiya H, Hoffman RM. A perspective on patient-derived orthotopic xenograft (PDOX) mouse models for identification of novel and individualized treatment for sarcoma. Int J Clin Oncol 2025:10.1007/s10147-025-02801-6. [PMID: 40493147 DOI: 10.1007/s10147-025-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/24/2025] [Indexed: 06/12/2025]
Abstract
Sarcomas, including osteosarcoma and soft tissue sarcoma, are heterogeneous and rare diseases with limited treatment options and a high metastatic potential. Despite advancements in immunotherapy and targeted therapies, many sarcoma patients have limited durable responses to these treatments. Therefore, individualized precision medicine and novel drug discovery are greatly needed. To address this unmet need, we have developed a patient-derived orthotopic xenograft (PDOX) mouse model of sarcomas using surgical orthotopic implantation. The PDOX models more accurately recapitulate the complex characteristics of human tumors compared to traditional subcutaneous xenografts. This enhanced fidelity is due to the preservation of the original tumor's histology and the accurate representation of the tumor microenvironment within the orthotopic implantation site. The present report summarizes our research group's experience with the sarcoma PDOX model and underscores its significant potential for identifying effective therapeutics. We have obtained numerous promising and unexpected results, including the identification of active chemotherapy drugs, novel drug combinations, and experimental therapeutics tailored to individual patients. In the current era of growing advancements in precision medicine, PDOX models offer a unique opportunity for developing individualized and innovative therapy specifically tailored to the individual needs of sarcoma patients.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sei Morinaga
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yohei Asano
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2025; 25:153-166. [PMID: 39681638 PMCID: PMC12124142 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
4
|
Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Higuchi T, Yamamoto N, Hayashi K, Kimura H, Miwa S, Singh SR, Tsuchiya H, Hoffman RM. Eribulin Regresses a Doxorubicin-resistant Dedifferentiated Liposarcoma in a Patient-derived Orthotopic Xenograft Mouse Model. Cancer Genomics Proteomics 2021; 17:351-358. [PMID: 32576580 DOI: 10.21873/cgp.20194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIM Dedifferentiated liposarcoma (DDLPS) is recalcitrant type of sarcoma. DDLPS has a low survival rate with high recurrence and metastasis. In the present study, we evaluated the efficacy of several drugs against doxorubicin-resistant DDLPS in a patient-derived orthotopic xenograft (PDOX) model for precision oncology. To establish the PDOX model, a tumor from a patient who had recurrent high-grade DDLPS from the retroperitoneum was previously grown orthotopically in the retroperitoneum of nude mice. MATERIALS AND METHODS We randomized DDLPS PDOX models into 8 treatment groups when tumor volume became approximately 100 mm3: control, no treatment; G2, doxorubicin (DOX); G3, pazopanib (PAZ); G4, gemcitabine (GEM) combined with docetaxel (DOC); G5, trabectedin (YON); G6, temozolomide (TEM); G7, palbociclib (PAL); G8, eribulin (ERB). Tumor length and width were measured both at the beginning and at the end of treatment. RESULTS At the end of treatment (day 14), all treatments significantly inhibited DDLPS PDOX tumor growth compared to the untreated control, except DOX. ERB was significantly more effective and regressed tumor volume compared to other treatments on day 14 after initiation of treatment. No significant differences were found in the relative body weight on day 14 compared to day 0 in any group. CONCLUSION The clinical potential of ERB against DDLPS is herein presented in a PDOX model.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
5
|
Solé-Martí X, Espona-Noguera A, Ginebra MP, Canal C. Plasma-Conditioned Liquids as Anticancer Therapies In Vivo: Current State and Future Directions. Cancers (Basel) 2021; 13:452. [PMID: 33504064 PMCID: PMC7865855 DOI: 10.3390/cancers13030452] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma-conditioned liquids (PCL) are gaining increasing attention in the medical field, especially in oncology, and translation to the clinics is advancing on a good path. This emerging technology involving cold plasmas has great potential as a therapeutic approach in cancer diseases, as PCL have been shown to selectively kill cancer cells by triggering apoptotic mechanisms without damaging healthy cells. In this context, PCL can be injected near the tumor or intratumorally, thereby allowing the treatment of malignant tumors located in internal organs that are not accessible for direct cold atmospheric plasma (CAP) treatment. Therefore, PCL constitutes a very interesting and minimally invasive alternative to direct CAP treatment in cancer therapy, avoiding surgeries and allowing multiple local administrations. As the field advances, it is progressively moving to the evaluation of the therapeutic effects of PCL in in vivo scenarios. Exciting developments are pushing forward the clinical translation of this novel therapy. However, there is still room for research, as the quantification and identification of reactive oxygen and nitrogen species (RONS) in in vivo conditions is not yet clarified, dosage regimens are highly variable among studies, and other more relevant in vivo models could be used. In this context, this work aims to present a critical review of the state of the field of PCL as anticancer agents applied in in vivo studies.
Collapse
Affiliation(s)
- Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (X.S.-M.); (A.E.-N.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (X.S.-M.); (A.E.-N.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (X.S.-M.); (A.E.-N.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (X.S.-M.); (A.E.-N.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Zhang Z, Hu K, Miyake K, Kiyuna T, Oshiro H, Wangsiricharoen S, Kawaguchi K, Higuchi T, Razmjooei S, Miyake M, Chawla SP, Singh SR, Hoffman RM. A novel patient-derived orthotopic xenograft (PDOX) mouse model of highly-aggressive liver metastasis for identification of candidate effective drug-combinations. Sci Rep 2020; 10:20105. [PMID: 33208807 PMCID: PMC7676248 DOI: 10.1038/s41598-020-76708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Liver metastasis is a recalcitrant disease that usually leads to death of the patient. The present study established a unique patient-derived orthotopic xenograft (PDOX) nude mouse model of a highly aggressive liver metastasis of colon cancer. The aim of the present study was to demonstrate proof-of-concept that candidate drug combinations could significantly inhibit growth and re-metastasis of this recalcitrant tumor. The patient’s liver metastasis was initially established subcutaneously in nude mice and the subcutaneous tumor tissue was then orthotopically implanted in the liver of nude mice to establish a PDOX model. Two studies were performed to test different drugs or drug combination, indicating that 5-fluorouracil (5-FU) + irinotecan (IRI) + bevacizumab (BEV) and regorafenib (REG) + selumetinib (SEL) had significantly inhibited liver metastasis growth (p = 0.013 and p = 0.035, respectively), and prevented liver satellite metastasis. This study is proof of concept that a PDOX model of highly aggressive colon-cancer metastasis can identify effective drug combinations and that the model has future clinical potential.
Collapse
Affiliation(s)
- Zhiying Zhang
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
7
|
Zhu G, Zhao M, Han Q, Tan Y, Sun YU, Bouvet M, Singh SR, Ye J, Hoffman RM. Pazopanib Inhibits Tumor Growth, Lymph-node Metastasis and Lymphangiogenesis of an Orthotopic Mouse of Colorectal Cancer. Cancer Genomics Proteomics 2020; 17:131-139. [PMID: 32108035 DOI: 10.21873/cgp.20173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM Pazopanib (PAZ) can inhibit tumor progression, but whether PAZ inhibits lymph node metastasis and lymphangiogenesis in colorectal cancer is still unknown. The aim of the present study was to determine the efficacy of PAZ on tumor growth, lymph node metastasis and lymphangiogenesis in an orthotopic nude mouse model in colorectal cancer. MATERIALS AND METHODS CT-26-green fluorescence protein (GFP)-expressing mouse colon cancer cells were injected into nude mice to establish a subcutaneous colorectal cancer model and were treated with saline and PAZ. Additionals subcutaneous tumors were harvested and cut into 5 mm3 fragments, then tumor fragments were implanted orthotopically in the cecum to establish an orthotopic colorectal-cancer nude mouse model. Orthotopic mice were randomized into two groups for the treatment with saline and PAZ, respectively. Tumor width, length and mouse body weight was measured twice a week. The Fluor Vivo imaging system was used to image the GFP. Hematoxylin & eosin staining and immunohistochemical staining was used for histological analysis. RESULTS PAZ inhibited the growth of subcutaneous colorectal cancer, as wells as orthotopic transplanted colorectal cancer tumors. PAZ suppressed lymph node metastasis and lymphangiogenesis in the orthotopic colon cancer model. No significant changes were observed in the body weight between the control and the mice treated with PAZ. CONCLUSION PAZ can inhibit the growth of colorectal cancer and inhibit lymph node metastasis and lymphangiogenesis in orthotopic colon cancer nude mouse models.
Collapse
Affiliation(s)
- Guangwei Zhu
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, U.S.A
| | | | | | - Y U Sun
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
8
|
Current Approaches for Personalized Therapy of Soft Tissue Sarcomas. Sarcoma 2020; 2020:6716742. [PMID: 32317857 PMCID: PMC7152984 DOI: 10.1155/2020/6716742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcomas (STS) are a highly heterogeneous group of cancers of mesenchymal origin with diverse morphologies and clinical behaviors. While surgical resection is the standard treatment for primary STS, advanced and metastatic STS patients are not eligible for surgery. Systemic treatments, including standard chemotherapy and newer chemical agents, still play the most relevant role in the management of the disease. Discovery of specific genetic alterations in distinct STS subtypes allowed better understanding of mechanisms driving their pathogenesis and treatment optimization. This review focuses on the available targeted drugs or drug combinations based on genetic aberration involved in STS development including chromosomal translocations, oncogenic mutations, gene amplifications, and their perspectives in STS treatment. Furthermore, in this review, we discuss the possible use of chemotherapy sensitivity and resistance assays (CSRA) for the adjustment of treatment for individual patients. In summary, current trends in personalized management of advanced and metastatic STS are based on combination of both genetic testing and CSRA.
Collapse
|
9
|
Temozolomide and Pazopanib Combined with FOLFOX Regressed a Primary Colorectal Cancer in a Patient-derived Orthotopic Xenograft Mouse Model. Transl Oncol 2020; 13:100739. [PMID: 32143177 PMCID: PMC7058405 DOI: 10.1016/j.tranon.2019.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: The goal of the present study was to determine the efficacy of temozolomide (TEM) and pazopanib (PAZ) combined with FOLFOX (oxaliplatin, leucovorin and 5-fluorouracil) on a colorectal cancer patient-derived orthotopic xenograft (PDOX) mouse model. Materials and Methods: A colorectal cancer tumor from a patient previously established in non-transgenic nude mice was implanted subcutaneously in transgenic green fluorescence protein (GFP)-expressing nude mice in order to label the tumor stromal cells with GFP. Then labeled tumors were orthotopically implanted into the cecum of nude mice. Mice were randomized into four groups: Group 1, untreated control; group 2, TEM + PAZ; group 3, FOLFOX; group 4, TEM + PAZ plus FOLFOX. Tumor width, length, and mouse body weight were measured weekly. The Fluor Vivo imaging System was used to image the GFP-lableled tumor stromal cells in vivo. H&E staining and immunohistochemical staining were used for histological analysis. Results: All three treatments inhibited tumor growth as compared to the untreated control group. The combination of TEM + PAZ + FOLFOX regressed tumor growth significantly more effectively than TEM + PAZ or FOLFOX. Only the combination of TEM + PAZ + FOLFOX group caused a decrease in body weight. PAZ suppressed lymph vessels density in the colorectal cancer PDOX mouse model suggesting inhibition of lymphangiogenesis. Conclusion: Our results suggest that the combination of TEM + PAZ + FOLFOX has clinical potential for colorectal cancer patient.
Collapse
|
10
|
Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, Hiroshima Y, Higuchi T, Oshiro H, Nelson SD, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Singh SR, Tsuchiya H, Hoffman RM. Patient-derived orthotopic xenograft models of sarcoma. Cancer Lett 2019; 469:332-339. [PMID: 31639427 DOI: 10.1016/j.canlet.2019.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Sarcoma is a rare and recalcitrant malignancy. Although immune and novel targeted therapies have been tested on many cancer types, few sarcoma patients have had durable responses with such therapy. Doxorubicin and cisplatinum are still first-line chemotherapy after four decades. Our laboratory has established the patient-derived orthotopic xenograft (PDOX) model using surgical orthotopic implantation (SOI). Many promising results have been obtained using the sarcoma PDOX model for identifying effective approved drugs and experimental therapeutics, as well as combinations of them for individual patients. In this review, we present our laboratory's experience with PDOX models of sarcoma, and the ability of the PDOX models to identify effective approved agents, as well as experimental therapeutics.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yukihiko Hiroshima
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiromichi Oshiro
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
11
|
Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Higuchi T, Singh SR, Tsuchiya H, Hoffman RM. Pazopanib regresses a doxorubicin-resistant synovial sarcoma in a patient-derived orthotopic xenograft mouse model. Tissue Cell 2019; 58:107-111. [PMID: 31133237 DOI: 10.1016/j.tice.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Synovial sarcoma (SS) is an aggressive subgroup of soft tissue sarcoma (STS) with high grade and high risk of metastasis. However, there are no systemic therapies available that target SS. Therefore, transformative therapy is needed for SS. To establish a patient-derived orthotopic xenograft (PDOX) model, a patient tumor with high grade SS from a lower extremity was grown orthotopically in the right biceps femoris muscle of mice. To test the efficacy of drugs, the PDOX models were randomized into five groups: Group 1 (G1), control-without treatment; Group 2 (G2), doxorubicin (DOX); Group 3 (G3), temozolomide (TEM); Group 4 (G4), gemcitabine (GEM) combined with docetaxel (DOC); and Group 5 (G5), pazopanib (PAZ). Tumor size and body weight were measured twice a week for each treatment group. A significant growth inhibition was found on day 14 in each treatment group compared to the untreated control, except for DOX. However, PAZ was significantly more effective than both TEM and GEM + DOC. In addition, PAZ significantly regressed the tumor volume on day 14 compared to day 0. No change was found in body weight on day 14 compared to day 0 in any treatment group. The present study demonstrated the precision of the SS PDOX models for individualizing SS therapy.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
12
|
Oshiro H, Tome Y, Kiyuna T, Miyake K, Kawaguchi K, Higuchi T, Miyake M, Zang Z, Razmjooei S, Barangi M, Wangsiricharoen S, Nelson SD, Li Y, Bouvet M, Singh SR, Kanaya F, Hoffman RM. Temozolomide targets and arrests a doxorubicin-resistant follicular dendritic-cell sarcoma patient-derived orthotopic xenograft mouse model. Tissue Cell 2019; 58:17-23. [PMID: 31133242 DOI: 10.1016/j.tice.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022]
Abstract
Follicular dendritic cell sarcoma (FDCS) is a very rare and highly recalcitrant disease. A patient's doxorubicin-resistant FDCS was previously established orthotopically on the right high thigh into the biceps femoris of mice to establish a patient-derived orthotopic xenograft (PDOX) model. The aim of the present manuscript was to identify an effective drug for this recalcitrant tumor. Here, we evaluated the efficacy of temozolomide (TMZ), trabectedin (TRAB) and pazopanib (PAZ) on the FDCS PDOX model. PDOX mouse models were randomized into five groups of eight to nine mice, respectively. Group 1, untreated control with PBS, i.p.; Group 2, treated with doxorubicin (DOX), 2.4 mg/kg, i.p., weekly for 3 weeks; Group 3, treated with PAZ, 50 mg/kg, oral gavage, daily for 3 weeks; Group 4, treated with TMZ, 25 mg/kg, oral gavage, daily for 3 weeks; Group 5, treated with TRAB, 0.15 mg/kg, i.v., weekly for 3 weeks. Body weight and tumor volume were assessed 2 times per week. TMZ arrested the FDCS PDOX model compared to the control group (p < 0.05). PAZ and TRAB did not have significant efficacy compared to the control group (p = 0.99, p = 0.69 respectively). The PDOX tumor was resistant to DOX (p= 0.99). as was the patient. The present study demonstrates that TMZ is effective for a PDOX model of FDCS established from a patient who failed DOX treatment, further demonstrating the power of PDOX to identify effective therapy including for tumors that failed first line therapy.
Collapse
Affiliation(s)
- Hiromichi Oshiro
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Tasuku Kiyuna
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kei Kawaguchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Zhiying Zang
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Sahar Razmjooei
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Maryam Barangi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Sintawat Wangsiricharoen
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
13
|
Kiyuna T, Tome Y, Murakami T, Kawaguchi K, Igarashi K, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Russell TA, Elliott I, Singh SR, Kanaya F, Eilber FC, Hoffman RM. Trabectedin arrests a doxorubicin-resistant PDGFRA-activated liposarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model. BMC Cancer 2018; 18:840. [PMID: 30126369 PMCID: PMC6102848 DOI: 10.1186/s12885-018-4703-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pleomorphic liposarcoma (PLPS) is a rare, heterogeneous and an aggressive variant of liposarcoma. Therefore, individualized therapy is urgently needed. Our recent reports suggest that trabectedin (TRAB) is effective against several patient-derived orthotopic xenograft (PDOX) mouse models. Here, we compared the efficacy of first-line therapy, doxorubicin (DOX), and TRAB in a platelet-derived growth factor receptor-α (PDGFRA)-amplified PLPS. METHODS We used a fresh sample of PLPS tumor derived from a 68-year-old male patient diagnosed with a recurrent PLPS. Subcutaneous implantation of tumor tissue was performed in a nude mouse. After three weeks of implantation, tumor tissues were isolated and cut into small pieces. To match the patient a PDGFRA-amplified PLPS PDOX was created in the biceps femoris of nude mice. Mice were randomized into three groups: Group 1 (G1), control (untreated); Group 2 (G2), DOX-treated; Group 3 (G3), TRAB-treated. Measurement was done twice a week for tumor width, length, and mouse body weight. RESULTS The PLPS PDOX showed resistance towards DOX. However, TRAB could arrest the PLPS (p < 0.05 compared to control; p < 0.05 compared to DOX) without any significant changes in body-weight. CONCLUSIONS The data presented here suggest that for the individual patient the PLPS PDOX model could specifically distinguish both effective and ineffective drugs. This is especially crucial for PLPS because effective first-line therapy is harder to establish if it is not individualized.
Collapse
Affiliation(s)
- Tasuku Kiyuna
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takashi Murakami
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kei Kawaguchi
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Igarashi
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Yunfeng Li
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Irmina Elliott
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|