1
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
2
|
Gong F, Gao L, Ma L, Li G, Yang J. Uncarboxylated osteocalcin alleviates the inhibitory effect of high glucose on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by regulating TP63. BMC Mol Cell Biol 2021; 22:24. [PMID: 33906607 PMCID: PMC8080387 DOI: 10.1186/s12860-021-00365-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Progressive population aging has contributed to the increased global prevalence of diabetes and osteoporosis. Inhibition of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by hyperglycemia is a potential pathogenetic mechanism of osteoporosis in diabetic patients. Uncarboxylated osteocalcin (GluOC), a protein secreted by mature osteoblasts, regulates bone development as well as glucose and lipid metabolism. In our previous studies, GluOC was shown to promote osteoblastic differentiation of BMSCs; however, the underlying mechanisms are not well characterized. Tumor protein 63 (TP63), as a transcription factor, is closely related to bone development and glucose metabolism. RESULTS In this study, we verified that high glucose suppressed osteogenesis and upregulated adipogenesis in BMSCs, while GluOC alleviated this phenomenon. In addition, high glucose enhanced TP63 expression while GluOC diminished it. Knock-down of TP63 by siRNA transfection restored the inhibitory effect of high glucose on osteogenic differentiation. Furthermore, we detected the downstream signaling pathway PTEN/Akt/GSK3β. We found that diminishing TP63 decreased PTEN expression and promoted the phosphorylation of Akt and GSK3β. We then applied the activator and inhibitor of Akt, and concluded that PTEN/Akt/GSK3β participated in regulating the differentiation of BMSCs. CONCLUSIONS Our results indicate that GluOC reduces the inhibitory effect of high glucose on osteoblast differentiation by regulating the TP63/PTEN/Akt/GSK3β pathway. TP63 is a potential novel target for the prevention and treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Fangzi Gong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Le Gao
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Ma
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Guangxin Li
- College of sports medicine and physical therapy, Beijing Sport University, Beijing, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Li N, Jiang L, Jin H, Wu Y, Liu Y, Huang W, Wei L, Zhou Q, Chen F, Gao Y, Zhu B, Zhang X. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids Surf B Biointerfaces 2019; 183:110454. [PMID: 31473407 DOI: 10.1016/j.colsurfb.2019.110454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Periodontitis is a chronic, destructive inflammatory disease that injures tooth- supporting tissues, eventually leading to tooth loss. Complete eradication of periodontal pathogenic microorganisms is fundamental to allow periodontal healing and commonly precedes periodontal tissue regeneration. To address this challenge, we report a strategy for developing an enzyme-mediated periodontal membrane for targeted antibiotic delivery into infectious periodontal pockets; the unique components of the membrane will also benefit periodontal alveolar bone repair. In this approach, a chitosan membrane containing polyphosphoester and minocycline hydrochloride (PPEM) was prepared. Physical, morphological, and ultrastructural analyses were carried out in order to assess cellular compatibility, drug release and antibacterial activity in vitro. Additionally, the functionality of the PPEM membrane was evaluated in vivo with a periodontal defect model in rats. The results confirm that the PPEM membrane exhibits good physical properties with excellent antibacterial activity and successfully promotes periodontal tissue repair, making it promising for periodontal treatment.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Liting Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hua Jin
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Huang
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, South Campus of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, 201499, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bangshang Zhu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| |
Collapse
|