1
|
An D, Jiang X, Yang Y. Sesamin Exerts Anti-Tumor Activity in Nasopharyngeal Carcinoma Through Inducing Autophagy and Reactive Oxygen Species Production. FRONT BIOSCI-LANDMRK 2025; 30:26038. [PMID: 40302321 DOI: 10.31083/fbl26038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Sesamin can suppress many cancers, but its effect on nasopharyngeal carcinoma (NPC) is unclear. Herein, we set out to pinpoint the possible changes in NPC due to Sesamin. METHODS The biological function of NPC cells exposed to Sesamin/N-acetyl-L-cysteine (NAC)/3-Methyladenine (3-MA) was detected, followed by evaluation of reactive oxygen species (ROS) production (dichlorodihydrofluorescein diacetate staining) and mitochondrial membrane potential (MMP) (flow cytometry). Proteins pertinent to apoptosis (cleaved caspase-3, cleaved poly (ADP-ribose) polymerase 1 (PARP1)), cell cycle (Cyclin B1), and autophagy (microtubule-associated protein light chain 3 (LC3)-I, LC3-II, Beclin-1, P62) were quantified by Western blot. After the xenografted tumor model in mice was established, the tumor volume and weight were recorded, and Ki-67 and cleaved caspase-3 levels were determined by immunohistochemical analysis. RESULTS Sesamin inhibited viability, proliferation, cell cycle progression and migration, induced apoptosis, increased ROS production, and decreased MMP in NPC cells. Sesamin elevated cleaved caspase-3/caspase-3, cleaved PARP1/PARP1, and Beclin-1 expressions as well as LC3-II/LC3-I ratio, while diminishing Cyclin B1 and P62 levels. NAC and 3-MA abrogated Sesamin-induced changes as above in NPC cells. Sesamin inhibited the increase of the xenografted tumor volume and weight, down-regulated Ki-67, and up-regulated cleaved caspase-3 in xenografted tumors. CONCLUSION Sesamin exerts anti-tumor activity in NPC, as demonstrated by attenuated tumor proliferation and xenografted tumor volume and weight, as well as induced apoptosis in tumor tissues, consequent upon the promotion of autophagy and reactive oxygen species production.
Collapse
Affiliation(s)
- Deqiang An
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| |
Collapse
|
2
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
3
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
4
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
5
|
Zhang Q, Yi H, Yao H, Lu L, He G, Wu M, Zheng C, Li Y, Chen S, Li L, Yu H, Li G, Tao X, Fu S, Deng X. Artemisinin Derivatives Inhibit Non-small Cell Lung Cancer Cells Through Induction of ROS-dependent Apoptosis/Ferroptosis. J Cancer 2021; 12:4075-4085. [PMID: 34093811 PMCID: PMC8176242 DOI: 10.7150/jca.57054] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the major cancer-related causes of morbidity and mortality worldwide. Despite the progress in lung cancer treatment, there is still an urgent need to discover novel therapeutic agents for NSCLC. Natural products represent a rich source of bioactive compounds. Through a natural compound library screening assay, we found that a group of anti-insect drugs had significant inhibitory effect on the proliferation of NSCLC cells. Among the anti-insect drugs, two derivatives of artemisinin, i.e., artesunate (ART) and dihydroartemisinin (DHA), a group of well-known anti-malarial drugs, have been shown to possess selective anti-cancer properties. Mechanistically, we found that ART and DHA induced apoptosis of A549 cells as evidenced by decreased protein level of VDAC and increased caspase 3 cleavage. Furthermore, cystine/glutamate transporter (xCT), a core negative regulator of ferroptosis, was downregulated by ART and DHA. The mRNA level of transferrin receptor (TFRC), a positive regulator of ferroptosis, was upregulated by ART and DHA. ART/DHA-induced apoptosis and ferroptosis in NSCLC cells were partly reversed by N-Acetyl-L-cysteine (NAC), a ROS scavenger, and ferrostatin-1, a ferroptosis inhibitor, respectively. These results suggest that artemisinin derivatives have anti-NSCLC activity through induction of ROS-dependent apoptosis/ferroptosis. Our findings provide the experimental basis for the potential application of artemisinin derivatives as a class of novel therapeutic drugs for NSCLC.
Collapse
Affiliation(s)
- Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Huimei Yi
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Hui Yao
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Lewei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Hongyuan Yu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Guifei Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
6
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Feng J, Peng Z, Gao L, Yang X, Sun Z, Hou X, Li E, Zhu L, Yang H. ClC-3 promotes paclitaxel resistance via modulating tubulins polymerization in ovarian cancer cells. Biomed Pharmacother 2021; 138:111407. [PMID: 33765585 DOI: 10.1016/j.biopha.2021.111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancers (EOC) present as malignant tumors with high mortality in the female reproductive system diseases. Acquired resistance to paclitaxel (PTX), one of the first-line treatment of EOC, remains a therapeutic challenge. ClC-3, a member of the voltage-gated Cl- channels, plays an essential role in a variety of cellular activities, including chemotherapeutic resistance. Here, we demonstrated that the protein expression and channel function of ClC-3 was upregulated in PTX resistance A2780/PTX cells compared with its parental A2780 cells. The silence of ClC-3 expression by siRNA in A2780/PTX cells partly recovered the PTX sensitivity through restored the G2/M arrest and resumed the chloride channel blocked. ClC-3 siRNA both inhibited the expression of ClC-3 and β-tubulin, whereas the β-tubulin siRNA reduced the expression of itself only, without affecting the expression of ClC-3. Moreover, treatment of ClC-3 siRNA in A2780/PTX cells increased the polymerization ratio of β-tubulin, and the possibility of proteins interaction between ClC-3 and β-tubulin was existing. Take together, the over-expression of ClC-3 protein in PTX-resistance ovarian cancer cells promotes the combination of ClC-3 and β-tubulin, which in turn increase the ration of free form and decrease the quota of the polymeric form of β-tubulin, and finally reduce the sensitivity to PTX. Our findings elucidated a novel function of ClC-3 in regulating PTX resistance and ClC-3 could serve as a potential target to overcome the PTX resistance ovarian cancer.
Collapse
Affiliation(s)
- Jiezhu Feng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zihan Peng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiurou Yang
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zele Sun
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Enze Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China.
| |
Collapse
|
8
|
5‑Nitro‑2‑(3‑phenylpropylamino) benzoic acid induces apoptosis of human lens epithelial cells via reactive oxygen species and endoplasmic reticulum stress through the mitochondrial apoptosis pathway. Int J Mol Med 2021; 47:59. [PMID: 33604681 PMCID: PMC7910017 DOI: 10.3892/ijmm.2021.4892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cataracts have a high incidence and prevalence rate worldwide, and they are the leading cause of blindness. Lens epithelial cell (LEC) apoptosis is often analysed in cataract research since it is the pathological basis of cataracts, except for congenital cataract. Chloride channels are present in ocular tissues, such as in trabecular cells, LECs and other cells. They serve an important role in apoptosis and participate in endoplasmic reticulum (ER) stress and oxidative stress. However, their role in the apoptosis of LECs has not been discussed. The present study examined the effects of the chloride channel blocker 5‑nitro‑2‑(3‑phenylpropylamino) benzoic acid (NPPB) in human LECs (HLECs) to elucidate the role of NPPB in HLECs and investigate the role and mechanism of chloride channels in cataract formation. HLECs were exposed to NPPB. Cell survival rate was evaluated using Cell Counting Kit‑8 assays. Oxidative stress was detected as reactive oxygen species (ROS) in cells by using a ROS assay kit. Apoptosis was examined by assessing mitochondrial membrane potential and using a JC‑1 assay kit, and western blot analysis was performed to measure the expression levels of mitochondrial‑dependent apoptosis pathway‑associated proteins. ER stress was evaluated by determining the intracellular calcium ion fluorescence intensity, and western blot analysis was performed to measure ER stress‑associated protein expression. The results revealed that NPPB treatment decreased the viability of HLECs and increased apoptosis. Additionally, NPPB increased intracellular ROS levels, as well as the number of JC‑1 monomers and the protein expression levels of B‑cell lymphoma‑2 (Bcl‑2)‑associated X and cleaved caspase‑3, and decreased Bcl‑2 protein expression. NPPB increased intracellular calcium ions, the protein expression levels of activating transcription factor 6, JNK, C/EBP homologous protein and caspase‑12, and the phosphorylation of protein kinase R‑like endoplasmic reticulum kinase. N‑acetylcysteine and 4‑phenylbutyric acid inhibited NPPB‑induced oxidative stress, ER stress and apoptosis. Therefore, NPPB treatment decreased cell viability and promoted apoptosis of HLECs via the promotion of oxidative and ER stress.
Collapse
|
9
|
Gu Z, Wang L, Yao X, Long Q, Lee K, Li J, Yue D, Yang S, Liu Y, Li N, Li Y. ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death Dis 2020; 11:898. [PMID: 33093458 PMCID: PMC7583252 DOI: 10.1038/s41419-020-03107-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Currently, only a few available targeted drugs are considered to be effective in stomach adenocarcinoma (STAD) treatment. The PARP inhibitor olaparib is a molecularly targeted drug that continues to be investigated in BRCA-mutated tumors. However, in tumors without BRCA gene mutations, particularly in STAD, the effect and molecular mechanism of olaparib are unclear, which largely restricts the use of olaparib in STAD treatment. In this study, the in vitro results showed that olaparib specifically inhibited cell growth and migration, exerting antitumor effect in STAD cell lines. In addition, a ClC-3/SGK1 regulatory axis was identified and validated in STAD cells. We then found that the down-regulation of ClC-3/SGK1 axis attenuated olaparib-induced cell growth and migration inhibition. On the contrary, the up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced cell growth and migration inhibition, and the enhancement effect could be attenuated by SGK1 knockdown. Consistently, the whole-cell recorded chloride current activated by olaparib presented the same variation trend. Next, the clinical data showed that ClC-3 and SGK1 were highly expressed in human STAD tissues and positively correlated (r = 0.276, P = 0.009). Furthermore, high protein expression of both ClC-3 (P = 0.030) and SGK1 (P = 0.006) was associated with poor survival rate in STAD patients, and positive correlations between ClC-3/SGK1 and their downstream molecules in STAD tissues were demonstrated via the GEPIA datasets. Finally, our results suggested that olaparib inhibited the PI3K/AKT pathway in STAD cells, and up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced PI3K/AKT pathway inhibition. The animal experiments indicated that olaparib also exerted antitumor effect in vivo. Altogether, our findings illustrate that olaparib exerts antitumor effect in human STAD, and ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect. Up-regulation of the ClC-3/SGK1 axis may provide promising therapeutic potential for the clinical application of olaparib in STAD treatment.
Collapse
Affiliation(s)
- Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jieyao Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongli Yue
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangning Yang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanfen Liu
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Cardiovascular Medicine, Qingdao No. 9 People's Hospital, Shandong, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
11
|
Xu X, Xu J, Zhao C, Hou X, Li M, Wang L, Chen L, Chen Y, Zhu L, Yang H. Antitumor effects of disulfiram/copper complex in the poorly-differentiated nasopharyngeal carcinoma cells via activating ClC-3 chloride channel. Biomed Pharmacother 2019; 120:109529. [PMID: 31606620 DOI: 10.1016/j.biopha.2019.109529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
The enhancement of the anticancer activity by disulfiram (DSF) chelated with copper (DSF/Cu2+) has been investigated recently, while the underlying molecular mechanisms still need to be fully elucidated. Chloride channel-3 (ClC-3) is over-expressed in a variety of cancers and involves multiple tumor biological events. However, whether the over-expression of ClC-3 in tumor cells affects the sensitivity of anti-tumor drugs remains unclear. Here, we showed that the involvement of ClC-3 chloride channel in the selective cytotoxicity of DSF/Cu2+ in the poorly-differentiated nasopharyngeal carcinoma. The EC50 of DSF alone and DSF/Cu2+ in activating the Cl- channel were 95.36 μM and 0.31 μM in the CNE-2Z cells, respectively. DSF/Cu2+ exhibited a positive correlation between the induction of the Cl- currents and the inhibition of cell proliferation. DSF/Cu2+ increased the ClC-3 protein expression and induced the cell apoptosis. Cl- channel blockers, NPPB and DIDS, and ClC-3 siRNA partially inhibited the cell apoptosis, and depleted the Cl- currents induced by DSF/Cu2+ in CNE-2Z cells. However, these effects could not be observed in the normal nasopharyngeal epithelium NP69-SV40 T cells. In vivo, the transplanted human nasopharyngeal carcinoma tumors size in the DSF/Cu2+ group decreased about 73.2% of those in the solvent control group. The chloride blockers partially inhibited the antitumor action of DSF/Cu2+. These data demonstrated that the selective cytotoxicity of DSF/Cu2+ may relate to its selective activation of ClC-3 Cl- channel pathways in CNE-2Z cells. ClC-3 Cl- channel can be viewed as a new and promising target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Physiology, School of Medicine, Henan University, Kaifeng, 475000, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jingkui Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengjia Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lixin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Linyan Zhu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
12
|
Tang X, Feng J, Peng Z, Hou X, Zuo W, Chen L, Wang L, Zhu L. Different properties between spontaneous and volume-activated chloride currents in human nasopharyngeal carcinoma and its normal counterpart cells. Cell Biochem Funct 2019; 37:486-493. [PMID: 31368181 DOI: 10.1002/cbf.3419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Although the spontaneous chloride currents (SCC) have been well studied in the normal cells, its properties and roles in neoplasms cells are still unknown. Here, we found that the SCC was manifested in the poorly differentiated human nasopharyngeal carcinoma CNE-2Z cells, with some differences such as lower occurrence and bigger current density than those of the volume-activated chloride currents (VACC). NPPB, a chloride channel blocker, inhibited the SCC much stronger than the VACC. Down-regulation of chloride channel -3 (ClC-3), a volume and mechanically dependent ion channel, could significantly decrease the VACC, but not in SCC. The occurrence, latency, and mean density of the SCC were much lower in the normal nasopharyngeal NP69-SV40T cells than those in CNE-2Z cells. Our results demonstrated that the spontaneous electrical reactivity of neoplasm cells is higher than that of normal cells, which probably relates to their high physiological activity of neoplasm cells. SIGNIFICANCE OF THE STUDY: Spontaneous chloride currents (SCC) are well known in excitable tissues and regulate a variety of physiological and pathophysiological processes. During our researching on the volume-activated chloride currents (VACC) in human nasopharyngeal carcinoma CNE-2Z cells, SCC could be also observed with different properties from VACC. Meanwhile, the occurrence, latency, and mean density of the SCC were much higher in CNE-2Z cells than those in normal nasopharyngeal NP69-SV40T cells. Our results revealed the expression and characteristics of SCC in carcinoma cells and provided a preliminary experimental basis for further exploring the function of SCC in tumour cell biology.
Collapse
Affiliation(s)
- Xinwei Tang
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Jiezhu Feng
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Zihan Peng
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Deng Z, Li W, Alahdal M, Zhang N, Xie J, Hu X, Chen Y, Fang H, Duan L, Gu L, Wang D. Overexpression of ClC-3 Chloride Channel in Chondrosarcoma: An In Vivo Immunohistochemical Study with Tissue Microarray. Med Sci Monit 2019; 25:5044-5053. [PMID: 31281178 PMCID: PMC6637820 DOI: 10.12659/msm.917382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Recently, ClC-3 chloride channel expression has been noted to be high in some tumors. In chondrosarcoma, which is a malignant tumor with a high incidence in the bone, there has been no previous literature regarding ClC-3 chloride channel expression. Here we evaluated the expression of ClC-3 chloride channel in chondrosarcoma and explored its clinical significance. Material/Methods In this study, 75 chondrosarcoma and 5 normal cartilage tissues were collected. Thereafter, tissue microarray was performed. Immunohistochemistry was also used to observe the level of ClC-3 chloride channel expression between normal and chondrosarcoma tissues. Results Results showed that the expression of ClC-3 chloride channel in the normal chondrocyte was thinner, since it showed distinct differentiation among chondrosarcoma specimens. Interestingly, we noticed that the moderately-differentiated chondrosarcoma (MDC) and the poorly-differentiated chondrosarcoma (PDC) exhibited 94.44% of ClC-3 chloride channel. Besides, the subcellular localization of ClC-3 chloride channel was changed in association with malignant degree changes. The subcellular localization of ClC-3 chloride channel in the MDC and PDC tissue was localized in the cytoplasm and both nucleus and cytoplasm: 83.33% (5 out of 6 cases) and 91.66% (11 out of 12 cases) respectively. On the other hand, we noticed that patient age and gender could have a relation with ClC-3 chloride channel expression; 30- to 60-year-old males showed more expression. Conclusions These results demonstrated a high frequency of ClC-3 chloride channel overexpression and subcellular localization differences in MDC and PDC tissue, suggesting a specific role of ClC-3 chloride channel in the pathogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Murad Alahdal
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Ningfeng Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Junxiong Xie
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Xiaotian Hu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Yang Chen
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Huankun Fang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
14
|
Starvation-induced autophagy is up-regulated via ROS-mediated ClC-3 chloride channel activation in the nasopharyngeal carcinoma cell line CNE-2Z. Biochem J 2019; 476:1323-1333. [DOI: 10.1042/bcj20180979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Nutrient deficiency develops frequently in nasopharyngeal carcinoma cell (CNE-2Z) due to the characteristics of aggregation and uncontrolled proliferation. Therefore, starvation can induce autophagy in these cells. Chloride channel 3 (ClC-3), a member of the chloride channel family, is involved in various biological processes. However, whether ClC-3 plays an important role in starvation-induced autophagy is unclear. In this study, Earle's balanced salt solution (EBSS) was used to induce autophagy in CNE-2Z cells. We found that autophagy and the chloride current induced by EBSS were inhibited by chloride channel blockers. ClC-3 knockdown inhibited the degradation of LC3-II and P62. Furthermore, when reactive oxygen species (ROS) generation was suppressed by antioxidant N-acetyl-l-cysteine (L-NAC) pretreatment, EBSS-induced autophagy was inhibited, and the chloride current was unable to be activated. Nevertheless, ClC-3 knockdown had little effect on ROS levels, indicating that ROS acted upstream of ClC-3 and that both ROS and ClC-3 participated in EBSS-induced autophagy regulation in CNE-2Z.
Collapse
|