1
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
2
|
He J, Zhang X, Chen X, Xu Z, Chen X, Xu J. Shared Genes and Molecular Mechanisms between Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma Established by WGCNA Analysis. Glob Med Genet 2023; 10:144-158. [PMID: 37501756 PMCID: PMC10370469 DOI: 10.1055/s-0043-1768957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of death from cancer worldwide. The histopathological features, risk factors, and prognosis of HCC caused by nonalcoholic fatty liver disease (NAFLD) appear to be significantly different from those of HCC caused by other etiologies of liver disease. Objective This article explores the shared gene and molecular mechanism between NAFLD and HCC through bioinformatics technologies such as weighted gene co-expression network analysis (WGCNA), so as to provide a reference for comprehensive understanding and treatment of HCC caused by NAFLD. Methods NAFLD complementary deoxyribonucleic acid microarrays (GSE185051) from the Gene Expression Omnibus database and HCC ribonucleic acid (RNA)-sequencing data (RNA-seq data) from The Cancer Genome Atlas database were used to analyze the differentially expressed genes (DEGs) between NAFLD and HCC. Then, the clinical traits and DEGs in the two disease data sets were analyzed by WGCNA to obtain W-DEGs, and cross-W-DEGs were obtained by their intersection. We performed subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of the cross-W-DEGs and established protein-protein interaction networks. Then, we identified the hub genes in them by Cytoscape and screened out the final candidate genes. Finally, we validated candidate genes by gene expression, survival, and immunohistochemical analyses. Results The GO analysis of 79 cross-W-DEGs showed they were related mainly to RNA polymerase II (RNAP II) and its upstream transcription factors. KEGG analysis revealed that they were enriched predominantly in inflammation-related pathways (tumor necrosis factor and interleukin-17). Four candidate genes (JUNB, DUSP1, NR4A1, and FOSB) were finally screened out from the cross-W-DEGs. Conclusion JUNB, DUSP1, NR4A1, and FOSB inhibit NAFLD and HCC development and progression. Thus, they can serve as potential useful biomarkers for predicting and treating NAFLD progression to HCC.
Collapse
Affiliation(s)
- Juan He
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xin Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Zongyao Xu
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jiangyan Xu
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
3
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
4
|
Zatzman M, Fuligni F, Ripsman R, Suwal T, Comitani F, Edward LM, Denroche R, Jang GH, Notta F, Gallinger S, Selvanathan SP, Toretsky JA, Hellmann MD, Tabori U, Huang A, Shlien A. Widespread hypertranscription in aggressive human cancers. SCIENCE ADVANCES 2022; 8:eabn0238. [PMID: 36417526 PMCID: PMC9683723 DOI: 10.1126/sciadv.abn0238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.
Collapse
Affiliation(s)
- Matthew Zatzman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Ripsman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tannu Suwal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | | | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wang Y, Zhang Z, Mi X, Li M, Huang D, Song T, Qi X, Yang M. Elevation of effective p53 expression sensitizes wild-type p53 breast cancer cells to CDK7 inhibitor THZ1. Cell Commun Signal 2022; 20:96. [PMID: 36058938 PMCID: PMC9442925 DOI: 10.1186/s12964-022-00837-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background The cyclin-dependent kinase 7 (CDK7) inhibitor THZ1 represses multiple cancer cells. However, its tumor-repressive efficiency in wild-type p53 breast cancer cells remains controversial. Methods We conducted various assays, including CCK8, colony formation, flow cytometry, western blotting, and lactate dehydrogenase release detection, to clarify whether p53 elevation sensitizes breast cancer cells to THZ1. Results We found that upregulating functional p53 contributes to the increased sensitivity of breast cancer cells to THZ1. Increased THZ1 sensitivity requires active p53 and an intact p53 pathway, which was confirmed by introducing exogenous wild-type p53 and the subsequent elevation of THZ1-mediated tumor suppression in breast cancer cells carrying mutant p53. We confirmed that p53 accumulates in the nucleus and mitochondria during cell death. Furthermore, we identified extensive transcriptional disruption, rather than solely CDK7 inhibition, as the mechanism underlying the nutlin-3 and THZ1-induced death of breast cancer cells. Finally, we observed the combined nutlin-3 and THZ1 treatment amplified gasdermin E cleavage. Conclusion Enhanced sensitivity of breast cancer cells to THZ1 can be achieved by increasing effective p53 expression. Our approach may serve as a potential treatment for patients with breast cancer resistant to regular therapies. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00837-z.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhihao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, 130021, Jilin, Republic of China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan Huang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tingting Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Qi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
6
|
Zeng S, Lan B, Ren X, Zhang S, Schreyer D, Eckstein M, Yang H, Britzen-Laurent N, Dahl A, Mukhopadhyay D, Chang D, Kutschick I, Pfeffer S, Bailey P, Biankin A, Grützmann R, Pilarsky C. CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. J Exp Clin Cancer Res 2022; 41:241. [PMID: 35945614 PMCID: PMC9364549 DOI: 10.1186/s13046-022-02443-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Although combined treatment with gemcitabine and albumin-bound paclitaxel has improved the prognosis of PDAC, both intrinsic and acquired chemoresistance remain as severe hurtles towards improved prognosis. Thus, new therapeutic targets and innovative strategies are urgently needed. METHODS In this study, we used the KPC mouse model-derived PDAC cell line TB32047 to perform kinome-wide CRISPR-Cas9 loss-of-function screening. Next-generation sequencing and MAGeCK-VISPR analysis were performed to identify candidate genes. We then conducted cell viability, clonogenic, and apoptosis assays and evaluated the synergistic therapeutic effects of cyclin-dependent kinase 7 (CDK7) depletion or inhibition with gemcitabine (GEM) and paclitaxel (PTX) in a murine orthotopic pancreatic cancer model. For mechanistic studies, we performed genome enrichment analysis (GSEA) and Western blotting to identify and verify the pathways that render PDAC sensitive to GEM/PTX therapy. RESULTS We identified several cell cycle checkpoint kinases and DNA damage-related kinases as targets for overcoming chemoresistance. Among them, CDK7 ranked highly in both screenings. We demonstrated that both gene knockout and pharmacological inhibition of CDK7 by THZ1 result in cell cycle arrest, apoptosis induction, and DNA damage at least predominantly through the STAT3-MCL1-CHK1 axis. Furthermore, THZ1 synergized with GEM and PTX in vitro and in vivo, resulting in enhanced antitumor effects. CONCLUSIONS Our findings support the application of CRISPR-Cas9 screening in identifying novel therapeutic targets and suggest new strategies for overcoming chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Daniel Schreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center a DFG NGS Competence Center, TU Dresden, 01307, Dresden, Germany
| | - Debabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Li X, Dean DC, Yuan J, Temple TH, Trent JC, Rosenberg AE, Yu S, Hornicek FJ, Duan Z. Inhibition of CDK7-dependent transcriptional addiction is a potential therapeutic target in synovial sarcoma. Biomed Pharmacother 2022; 149:112888. [PMID: 35367753 DOI: 10.1016/j.biopha.2022.112888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Synovial sarcoma is typical aggressive malignant without satisfactory treatment outcome in adult series. Cyclin-dependent kinases (CDKs) in transcription have been considered promising molecular targets in cancer. Among these, CDK7 has been shown to play important roles in the pathogenesis of malignancies. However, the modulation mechanism of CDK7-regulated transcription in synovial sarcoma is unknown. In the present study, we aim to determine the expression and function of CDK7 in the transcription cycle of RNA polymerase II (RNAP II), and evaluate its prognostic and therapeutic significance in synovial sarcoma. Results showed that overexpression of CDK7 correlates with higher clinical stage and grade, and worse outcomes in clinic. High CDK7 expression was confirmed in all tested human synovial sarcoma cell lines and CDK7 was largely localized to the cell nucleus. Downregulation through siRNA or inhibition with the CDK7-targeting agent BS-181 exhibited dose-dependent cytotoxicity and prevented cell colony formation. Western blots demonstrated that inhibition of CDK7 paused transcription by a reduction of RNAP II phosphorylation. Blocking CDK7-dependent transcriptional addiction was accompanied by promotion of apoptosis. Furthermore, the CDK7-specific inhibitor reduced 3D spheroid formation and migration of synovial sarcoma. Collectively, our findings highlight the role of CDK7-dependent transcriptional addiction in human synovial sarcoma. CDK7-specific cytotoxic agents are therefore promising novel treatment options for synovial sarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, Keck School of Medicine at University of Southern California (USC), USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave, NTT 3449, Los Angeles, California, 90033, USA.
| | - Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Thomas H Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Jonathan C Trent
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Andrew E Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Xie G, Zhu A, Gu X. Converged DNA Damage Response Renders Human Hepatocellular Carcinoma Sensitive to CDK7 Inhibition. Cancers (Basel) 2022; 14:cancers14071714. [PMID: 35406486 PMCID: PMC8996977 DOI: 10.3390/cancers14071714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. HCC has a dismal five-year mortality estimate of >95%, ranking as the fourth leading cause of cancer-related mortality worldwide. Despite the recent progression in the treatment of HCC with multikinase inhibitors, immunotherapy, and antiangiogenic monoclonal antibodies, among other newly emerging therapeutics, the efficacy has varied among patients, making HCC a high priority for developing novel targeted therapeutic agents. CDK7 has been exploited as a therapeutic target in HCC. In the present study, we demonstrated that HCC cells were highly susceptible to THZ1, a selective covalent CDK7 inhibitor. We further discovered that transcription factor MYC-promoted cell proliferation renders cancer cells hypersensitive to apoptotic cell death with THZ1 treatment. Our findings indicate that targeting CDK7 with THZ1 may be a new plausible strategy for treating HCC, in which MYC plays crucial roles in cell proliferation and tumor growth. Abstract Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality. The inhibition of cyclin-dependent kinase 7 (CDK7) activity has shown therapeutic efficacy in HCC. However, the underlying molecular mechanisms remain elusive. Here, we show that three HCC lines, HepG2, Hep3B, and SK-Hep-1, were highly susceptible to the CDK7 inhibitor THZ1. In mouse models, THZ1 effectively reduced HepG2 tumor growth and tumor weight. THZ1 arrested cell cycle and triggered MYC-related apoptosis in HepG2. To evaluate how MYC protein levels affected THZ1-induced apoptotic cell death, we overexpressed MYC in HepG2 and found that exogenously overexpressed MYC promoted cell cycle progression and increased cells in the S phase. THZ1 drastically engendered the apoptosis of MYC-overexpressing HepG2 cells in the S and G2/M phases. Importantly, transcription-inhibition-induced apoptosis is associated with DNA damage, and exogenous MYC expression further enhanced the THZ1-induced DNA damage response in MYC-overexpressing HepG2 cells. Consistently, in the HepG2 xenografts, THZ1 treatment was associated with DNA-damage-induced cell death. Together, our data indicate that the converged effect of MYC-promoted cell cycle progression and CDK7 inhibition by THZ1 confers the hypersensitivity of HCC to DNA-damage-induced cell death. Our findings may suggest a new therapeutic strategy of THZ1 against HCC.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Oral Pathology, Howard University, 600 W. Street NW, Washington, DC 20059, USA;
- Cancer Center, Howard University, 600 W. Street NW, Washington, DC 20059, USA
- Correspondence: (G.X.); (X.G.)
| | - Ailin Zhu
- Department of Oral Pathology, Howard University, 600 W. Street NW, Washington, DC 20059, USA;
| | - Xinbin Gu
- Department of Oral Pathology, Howard University, 600 W. Street NW, Washington, DC 20059, USA;
- Cancer Center, Howard University, 600 W. Street NW, Washington, DC 20059, USA
- Correspondence: (G.X.); (X.G.)
| |
Collapse
|
9
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
10
|
Wang Y, Peng J, Mi X, Yang M. p53-GSDME Elevation: A Path for CDK7 Inhibition to Suppress Breast Cancer Cell Survival. Front Mol Biosci 2021; 8:697457. [PMID: 34490348 PMCID: PMC8417410 DOI: 10.3389/fmolb.2021.697457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Higher cyclin-dependent kinase (CDK7) expression is a character of breast cancer and indicates poor prognosis. Inhibiting CDK7 exhibited effective cancer cell suppression which implies the potential of CDK7 inhibition to be a method for anti-cancer treatment. Our study aimed to explore a novel mechanism of CDK7 inhibition for suppressing breast cancer cell survival. Here, we proved inhibiting CDK7 repressed breast cancer cell proliferation and colony formation and increased the apoptotic cell rate, with p53 and GSDME protein level elevation. When p53 was suppressed in MCF-7 cells, the decline of GSDME expression and associated stronger proliferation and colony formation could be observed. Since downregulation of GSDME was of benefit to breast cancer cells, p53 inhibition blocked the elevation of GSDME induced by CDK7 inhibition and retrieved cells from the tumor suppressive effect of CDK7 inhibition. Therefore, CDK7 inhibition exerted a negative effect on breast cancer cell proliferation and colony formation in a p53–GSDME dependent manner. These results revealed the CDK7–p53–GSDME axis could be a pathway affecting breast cancer cell survival.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jingyu Peng
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuguang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
12
|
Chow PM, Chang YW, Kuo KL, Lin WC, Liu SH, Huang KH. CDK7 inhibition by THZ1 suppresses cancer stemness in both chemonaïve and chemoresistant urothelial carcinoma via the hedgehog signaling pathway. Cancer Lett 2021; 507:70-79. [PMID: 33741425 DOI: 10.1016/j.canlet.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Urothelial carcinoma (UC) is the most common type of bladder cancer, with a 5-year survival rate of only 4.6% in metastatic UC. Despite the advances related to immune-checkpoint inhibitor therapy, chemotherapy remains the standard of care for metastatic diseases, with a 50% response rate. The covalent cyclin-dependent kinase 7 (CDK7) inhibitor THZ1 interferes with transcription machinery and is reported to be effective in cancers without targetable mutations. Therefore, we investigated the therapeutic effect of THZ1 on UC and examined possible mechanisms underlying its effects in both chemonaïve and chemosensitive cancers. CDK7 expression is increased in bladder cancer tissues, especially in patients with chemoresistance. THZ1 induced apoptosis and decreased viability in RT4, BFTC905, HT1376, T24, and T24/R UC cell lines. RNA-sequencing, immunoblotting, and sphere-formation assays confirmed that THZ1 suppressed cancer stemness. In the mouse xenograft model, THZ1 suppressed both chemonaïve and chemoresistant tumors. These results indicate that CDK7 inhibition-related cancer stemness suppression is a potential therapeutic strategy for both chemonaïve and chemoresistant UC.
Collapse
Affiliation(s)
- Po-Ming Chow
- Department of Urology, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Urology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Yu-Wei Chang
- Department of Urology, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Urology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Urology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Urology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
13
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
14
|
Ge H, Yao Y, Jiang Y, Wu X, Wang Y. Pharmacological inhibition of CDK7 by THZ1 impairs tumor growth in p53-mutated HNSCC. Oral Dis 2021; 28:611-620. [PMID: 33503275 DOI: 10.1111/odi.13783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cyclin-dependent kinase 7 (CDK7) has been critically linked to human cancer. However, the roles of CDK7 in head and neck squamous cell carcinoma (HNSCC) remain incompletely known. Here, we sought to dissect the functions of CDK7 underlying HNSCC tumorigenesis and explore whether pharmacological inhibition of CDK7 could induce anti-cancer effects. METHODS CDK7 expression was measured in a panel of HNSCC cell lines with p53 mutation and 20 pairs of HNSCC samples and adjacent non-tumor tissues. Genetic targeting and pharmacological inhibition of CDK7 were conducted to dissect the biological roles of CDK7 in p53-mutated HNSCC cells. An HNSCC xenograft model was developed to determine the therapeutic effects of THZ1 in vivo. Potential genes and pathways responsible for therapeutic effects of THZ1 were identified by genome-wide RNA-sequencing and bioinformatics interrogations. RESULTS CDK7 expression was significantly elevated in cancerous cells and samples as compared with their adjacent non-tumor counterparts. Impaired cell proliferation, migration, and invasion as well increased apoptosis were observed in cells upon CDK7 knockdown or THZ1 exposure. THZ1 administration potently inhibited tumor overgrowth in vivo. Mechanistically, hundreds of genes enriched in cell proliferation, apoptosis, and cancer-related categories were identified to be potentially mediated the therapeutic effects of THZ1 in HNSCC. CONCLUSION Our findings reveal that CDK7 might serve as a novel putative pro-oncogenic gene underlying HNSCC tumorigenesis and therapeutic targeting of CDK7 might be a promising strategy for p53-mutated HNSCC.
Collapse
Affiliation(s)
- Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yuan Yao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Xiang Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| |
Collapse
|
15
|
Liang H, Du J, Elhassan RM, Hou X, Fang H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin Investig Drugs 2021; 30:61-76. [PMID: 33183110 DOI: 10.1080/13543784.2021.1850693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.
Collapse
Affiliation(s)
- Hanzhi Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University , Jinan, Shandong, China
| | - Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| |
Collapse
|
16
|
CDK12: a potential therapeutic target in cancer. Drug Discov Today 2020; 25:2257-2267. [PMID: 33038524 DOI: 10.1016/j.drudis.2020.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 12 engages in diversified biological functions, from transcription, post-transcriptional modification, cell cycle, and translation to cellular proliferation. Moreover, it regulates the expression of cancer-related genes involved in DNA damage response (DDR) and replication, which are responsible for maintaining genomic stability. CDK12 emerges as an oncogene or tumor suppressor in different cellular contexts, where its dysregulation results in tumorigenesis. Current CDK12 inhibitors are nonselective, which impedes the process of pharmacological target validation and drug development. Herein, we discuss the latest understanding of the biological roles of CDK12 in cancers and provide molecular analyses of CDK12 inhibitors to guide the rational design of selective inhibitors.
Collapse
|
17
|
Diab S, Yu M, Wang S. CDK7 Inhibitors in Cancer Therapy: The Sweet Smell of Success? J Med Chem 2020; 63:7458-7474. [DOI: 10.1021/acs.jmedchem.9b01985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah Diab
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Mingfeng Yu
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
18
|
Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, Yue T, Yang Y, Jiang J. CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev 2019; 34:53-71. [PMID: 31857346 PMCID: PMC6938674 DOI: 10.1101/gad.333146.119] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shuang Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA
| | - Jian Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tao Yue
- Center for the Genetics and Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
19
|
Hu S, Marineau JJ, Rajagopal N, Hamman KB, Choi YJ, Schmidt DR, Ke N, Johannessen L, Bradley MJ, Orlando DA, Alnemy SR, Ren Y, Ciblat S, Winter DK, Kabro A, Sprott KT, Hodgson JG, Fritz CC, Carulli JP, di Tomaso E, Olson ER. Discovery and Characterization of SY-1365, a Selective, Covalent Inhibitor of CDK7. Cancer Res 2019; 79:3479-3491. [DOI: 10.1158/0008-5472.can-19-0119] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
|
20
|
Li Z, Rong L, Lian H, Cheng J, Wu X, Li X. Knockdown MTMR14 promotes cell apoptosis and inhibits migration in liver cancer cells. Gene 2018; 691:106-113. [PMID: 30586604 DOI: 10.1016/j.gene.2018.11.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Myotubularin-related protein 14 (MTMR14) is a member of the myotubularin (MTM)-related protein family and plays a key role in cardiomyopathy and autophagy. However, its potential implication in human cancer is unclear. In this study, we have investigated the expression profile of MTMR14 and its functional impact in liver cancer for the first time. Expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that MTMR14 expression is obviously overexpressed in liver cancer, and positively correlated with clinical stage. A loss-of-function study showed that knockdown of MTMR14 promotes cell apoptosis and inhibits cell migration. MTMR14 knockdown also inhibits tumor migration in vivo in liver cancer peritoneal implantation nude mouse model. A molecular mechanistic study by western blot showed that Knockdown MTMR14 causes downregulation of N-cadherin and E-cadherin, and promotes the cleavage and activation of caspase12, caspase9 and caspase3, but excluding caspase8. These results suggest that MTMR14 affects cell migration through N-cadherin and E-cadherin. Additionally, MTMR14 affects cell apoptosis through mitochondrial pathway but not the death receptor pathway. Herein, our results indicate MTMR14 could have an oncogenic role in human liver cancer and thus demonstrates its potential as a target for the diagnosis and/or treatment of liver cancer.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China
| | - Li Rong
- Department of Gastroenterology, Chongqing Infectious Disease Medical Center, Chongqing City 400030, PR China
| | - Haifeng Lian
- Department of Gastroenterology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, PR China
| | - Junning Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China
| | - Xiaoling Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China.
| | - Xiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1#Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|