1
|
Zhao HX, Lv ZY, Zhao BC, Ma Y, Li X, Guan GQ. Expression profile of microRNAs in bovine lymphocytes infected with Theileria annulata and treated with buparvaquone. Parasitol Res 2024; 123:318. [PMID: 39249568 DOI: 10.1007/s00436-024-08341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Several miRNA-based studies on Theileria-transformed bovine cells have been conducted; however, the mechanism by which transformed cells exhibit uncontrolled proliferation is not yet fully understood. Therefore, it is necessary to screen more microRNAs that may play a role in the transformation process of host cells infected with Theileria annulata to better understand the transformation mechanisms of Theileria-infected cells. RNA sequencing was used to analyze miRNAs expression in the host bovine lymphocytes infected with T. annulata at different time points after buparvaquone (BW720) treatment and DMSO treatment (control groups). Differential miRNAs related to cell proliferation and apoptosis were identified through comparison with gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and a regulatory network of miRNA-mRNA was constructed. In total, 272 differentially expressed miRNAs were found at 36, 60 and 72 h. The miRNAs change of bta-miR-2285t, novel-miR-622, bta-miR-2478, and novel-miR-584 were significant. Analysis of 27 of these co-differential expressed miRNAs revealed that 15 miRNAs were down-regulated and 12 miRNAs were up-regulated. A further analysis of the changes in the expression of each of these 27 miRNAs in the three datasets suggested that bta-miR-2285t, bta-miR-345-5p, bta-miR-34a, bta-miR-150, and the novel-miR-1372 had significantly changed. Predicted target genes for these 27 miRNAs were analyzed by KEGG and the results demonstrated that EZR, RASSF, SOCS1 were mainly enriched in the signaling pathway microRNAs in cancer. MAPKAPK2, RELB, FLT3LG, and GADD45B were mainly enriched in the MAPK signaling pathway, and some genes were enriched in Axon guidance. This study has provided valuable information to further the understanding of the regulatory function of miRNAs in the host microenvironment and host-parasite interaction mechanisms.
Collapse
Affiliation(s)
- Hong-Xi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China.
| | - Zhao-Yong Lv
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bao-Cai Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yue Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xia Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Gui-Quan Guan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
2
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
3
|
Ge Y, Zhang R, Feng Y, Lu J, Li H. Mbd2 deficiency alleviates retinal cell apoptosisvia the miR-345-5p/Atf1 axis in high glucoseinjury and streptozotocin-induced diabetic mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1201-1214. [PMID: 34853720 PMCID: PMC8605293 DOI: 10.1016/j.omtn.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
DNA methylation is considered to play an important role in the development of diabetic retinopathy. Here, our goal was to investigate the precise role of methyl-CpG binding domain protein 2 (Mbd2) in the apoptosis of retinal ganglion cells (RGCs) in the early diabetic retina. Mbd2 was significantly upregulated after high glucose (HG) treatment and played a proapoptotic role in RGCs during HG-induced apoptosis. Combining ChIP and gene microarray datasets, the results showed that Mbd2 possessed potential binding sites for miR-345-5p, thereby elevating the expression levels of miR-345-5p via the enhancement of promoter demethylation. Activating transcription factor 1 (Atf1) played an anti-apoptotic role during the process of apoptosis in RGCs and acted as the target gene for miR-345-5p. Furthermore, the number of surviving RGCs in the diabetic retina was increased in Mbd2-knockout mice when compared with wild-type mice and the visual function became better accordingly. Collectively, our data demonstrated that the HG-induced overexpression of Mbd2 in the retina was partly responsible for the apoptosis of retinal neuronal cells through the miR-345-5p/Atf1 axis. Therefore, the targeting of Mbd2 might represent a novel therapeutic strategy for the treatment of neurodegeneration in the early diabetic retina.
Collapse
Affiliation(s)
- Yanni Ge
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ran Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuqing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jinfang Lu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
5
|
CircNPM1 strengthens Adriamycin resistance in acute myeloid leukemia by mediating the miR-345-5p/FZD5 pathway. Cent Eur J Immunol 2021; 46:162-182. [PMID: 34764785 PMCID: PMC8568022 DOI: 10.5114/ceji.2021.108175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with poor long-term outcomes. Numerous studies claim that circular RNAs (circRNAs) are important regulators in AML progression. This study intended to explore the role of circNPM1 in AML development and drug chemoresistance. The expression of circNPM1 and miR-345-5p was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cellular activities, including cell growth, apoptosis, cell cycle, migration and invasion, were monitored using colony formation assay, flow cytometry assay and transwell assay, respectively. The relationship between miR-345-5p and circNPM1 or Frizzled-5 (FZD5) was predicted by the bioinformatics tool starBase and validated by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. CircNPM1 was abundantly expressed in serum samples from AML patients and AML cell lines. CircNPM1 silence or miR-345-5p restoration repressed colony formation, cell migration and invasion, contributed to cell apoptosis and cell cycle arrest, and weakened Adriamycin (ADM) resistance of AML cells. MiR-345-5p was a target of circNPM1 and was downregulated in AML serum and cells. MiR-345-5p deficiency reversed the effects of circNPM1 silence. Further, FZD5 was targeted by miR-345-5p, and circNPM1 regulated FZD5 expression by adsorbing miR-345-5p. FZD5 overexpression could block the function of miR-345-5p restoration. CircNPM1 might be a vital regulator for ADM chemoresistance in AML cells, which partly depended on the role of the miR-345-5p/FZD5 axis. Our study presents the view that circNPM1 degradation may be a key strategy in AML resistance therapy.
Collapse
|
6
|
Xu W, Che DD, Liu Q, Pan YW, Lv SQ, Chen BD. The inhibitory effect of miR-345 on glioma progression is closely related to circRNA-hsa_circ_0073237 and HDGF. Cells Tissues Organs 2021; 210:368-379. [PMID: 34348265 DOI: 10.1159/000518667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wu Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Dan-Dan Che
- Department of Intensive Care Unit, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Wen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bao-Dong Chen
- Department of Neurosurgery, Shenzhen Hospital, Peking University, Shenzhen, China
| |
Collapse
|
7
|
Zhu Y, Ma X, Zhang H, Wu Y, Kang M, Fang Y, Xue Y. Mechanism of circADD2 as ceRNA in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:639910. [PMID: 34055775 PMCID: PMC8155473 DOI: 10.3389/fcell.2021.639910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children. Increasing evidence suggests that circular RNAs (circRNAs) play critical regulatory roles in tumor biology. However, the expression patterns and roles of circRNAs in childhood acute lymphoblastic leukemia (ALL) remain largely unknown. Methods: circADD2 was selected by microarray assay and confirmed by qRT-PCR; in vitro effects of circADD2 were determined by CCK-8 and flow cytometry; while mice subcutaneous tumor model was designed for in vivo analysis. RNA immunoprecipitation and dual-luciferase assay were applied for mechanistic study. Protein levels were examined by Western blot assay. Results: circADD2 was down-regulated in ALL tissues and cell lines. Overexpression of circADD2 inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. Briefly, circADD2 could directly sponge miR-149-5p, and the level of AKT2, a target gene of miR-149-5p, was downregulated by circADD2. Conclusion: circADD2, as a tumor suppressor in ALL, can sponge miR-149-5p, and may serve as a potential biomarker for the diagnosis or treatment of ALL.
Collapse
Affiliation(s)
- Yuting Zhu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Xiaopeng Ma
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yijun Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
9
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
Guo Q, Xu Y, Li J, An W, Luo D, Huang C, Huang Y. Explore the Effect and Target of Liraglutide on Islet Function in Type 2 Diabetic Rats by miRNA Omics Technology. Diabetes Metab Syndr Obes 2021; 14:3795-3807. [PMID: 34511953 PMCID: PMC8425186 DOI: 10.2147/dmso.s325030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To analyze the effect and potential therapeutic targets of liraglutide in type 2 diabetes through miRNA expression profiling. METHODS Ten of 30 SPF Wistar rats, males at 4 weeks old, were randomly selected as the control group and given conventional feed, the other rats adopted high-sugar and high-fat diet combined with an intraperitoneal injection of streptozotocin to establish a T2DM model. One unsuccessful rat was excluded, and the remaining rats were randomized to the model and the liraglutide group. Liraglutide group was subcutaneously injected with liraglutide 0.11 mg/kg for 8 weeks. The biochemical indicators and staining HE were detected. The expression of miRNA in pancreatic tissue was detected by miRNA sequencing. The intersection of miRNA difference was used to predict the target gene, then functional enrichment was performed to identify its possible biological functions and signal transduction paths. Finally, qRT-PCR was used to verify the results. RESULTS Compared to the model group, the level of fasting blood glucose (FBG), glucagon and insulin resistance index (HOMA-IR) in the liraglutide group were significantly decreased, fasting insulin (FINS) and insulin sensitivity index (ISI) were increased. Nine differential miRNAs (miR-135a-5p, miR-144-5p, miR-21-3p, miR-215, miR-451-5p, miR-486, miR-122-5p, miR-181d-5p and miR-345-5p) were identified at the intersection through two miRNA sequencing. A total of 3359 related target gene predictions were obtained. GO and pathway analyses demonstrated that differentially expressed genes were closely related to cell proliferation, angiogenesis, and proteolysis. Significant signaling pathways included PI signaling system, autophagy, FoxO and HIF-1 signaling pathway. CONCLUSION Liraglutide could improve islet function by regulating nine miRNAs, and the related signaling pathways included PI signaling system, autophagy, FoxO and HIF-1 signaling pathway. Our study provided the basis and direction for further exploring the molecular mechanism of liraglutide on T2DM.
Collapse
Affiliation(s)
- Qiuyue Guo
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, People’s Republic of China
| | - Jie Li
- First Clinical Medical College, Jingshi Rd. Campus, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Wenrong An
- First Clinical Medical College, Jingshi Rd. Campus, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Dan Luo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Chengcheng Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
- Correspondence: Yanqin Huang Email ;
| |
Collapse
|
11
|
Xing L, Ren J, Guo X, Qiao S, Tian T. Decitabine shows anti-acute myeloid leukemia potential via regulating the miR-212-5p/CCNT2 axis. Open Life Sci 2020; 15:1013-1023. [PMID: 33817287 PMCID: PMC7874548 DOI: 10.1515/biol-2020-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Previous research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.
Collapse
Affiliation(s)
- Lina Xing
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Jinhai Ren
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Xiaonan Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Shukai Qiao
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Tian Tian
- Department of Hematology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| |
Collapse
|
12
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Li Y, Zhuang J. miR-345-3p serves a protective role during gestational diabetes mellitus by targeting BAK1. Exp Ther Med 2020; 21:2. [PMID: 33235611 PMCID: PMC7678625 DOI: 10.3892/etm.2020.9434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that microRNAs (miRs) serve a crucial role during the development of gestational diabetes mellitus (GDM). However, the mechanisms underlying miR-345-3p and its protective role during GDM have not been previously reported. The present study investigated miR-345-3p expression and function in vitro, and the possible molecular mechanisms underlying GDM. Compared with healthy pregnant women, miR-345-3p was downregulated in the placental tissue and peripheral blood of patients with GDM. Further investigation revealed that BCL2-antagonist/killer 1 (BAK1) was a predicted target gene of miR-345-3p, and the expression of BAK1 was significantly increased in patients with GDM compared with healthy pregnant women. In vitro analysis revealed that miR-345-3p mimic significantly increased cell viability, migration and invasion, inhibited apoptosis, upregulated Bcl-2 and matrix metallopeptidase 9 expression, and decreased Bax expression compared with the control group. Furthermore, miR-245-3p mimic-induced alterations were reversed by BAK1 overexpression. The results suggested that miR-345-3p overexpression exhibited a protective role in patients with GDM by inhibiting HTR8-/SVneo cell apoptosis, and promoting cell proliferation and migration via targeting BAK1. The use of miR-345-3p for the diagnosis of GDM requires further investigation.
Collapse
Affiliation(s)
- Yuxia Li
- Department of Gynecology and Obstetrics, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Jun Zhuang
- Department of Obstetrics, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, P.R. China
| |
Collapse
|
14
|
Nie ZY, Zhao MH, Cheng BQ, Pan RF, Wang TR, Qin Y, Zhang XJ. Tanshinone IIA regulates human AML cell proliferation, cell cycle, and apoptosis through miR-497-5p/AKT3 axis. Cancer Cell Int 2020; 20:379. [PMID: 32782437 PMCID: PMC7412841 DOI: 10.1186/s12935-020-01468-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background The roots of Salvia miltiorrhiza are used in traditional Chinese medicine (TCM) and have high medicinal value. Tanshinone IIA (Tan IIA) is the active ingredient of Salvia miltiorrhiza which can inhibit the growth of acute leukemia cell lines in vitro, although the mechanism remains unclear. Methods CCK-8 assays and BrdU stain were used to evaluate cell proliferation ability. Western blot analysis was used to detect protein expression. miR-497-5p expression level was detected by using qRT-PCR, and Annexin V-FITC/propidium iodide (PI) was used to detect cell apoptosis. Results Here we reported that Tan IIA could inhibit cell proliferation, induce cell cycle arrest, and promote cell apoptosis in acute myeloid leukemia (AML) cells. Thus, Tan IIA had the anti-cancer activity in AML cell lines, which was likely mediated by up-regulation of miR-497-5p expression. Our data further showed that in AML cells, the same effects were observed with overexpression of miR-497-5p by a miR-497-5p mimic. We demonstrated that Tan IIA could inhibit the expression of AKT3 by up-regulating the expression of miR-497-5p. We subsequently identified that AKT3 was the direct target of miR-497-5p, and that treatment with Tan IIA obviously reversed the effect of treatment with an miR-497-5p inhibitor under harsh conditions. In turn, PCNA expression was increased and cleaved Caspase-3 was suppressed, which contributed to the growth of AML cells. Conclusions Our results showed that Tan IIA could inhibit cell proliferation in AML cells through miR-497-5p-mediated AKT3 downregulation pathway.
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Ming-Hui Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, 071000 China
| | - Bao-Qian Cheng
- Department of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050000 China
| | - Rong-Fang Pan
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Tian-Rui Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, 071000 China.,Department of Life Science and Green Development, Hebei University, Baoding, 071000 China
| | - Xue-Jun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| |
Collapse
|
15
|
Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, Iannetti I, Di Pietro C, Bolasco G, Palmieri V, Vilardo L, Panini N, Bonaventura F, Papi M, Scavizzi F, Raspa M, Leonetti C, Falcone G, Felsani A, D’Agnano I. Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers (Basel) 2020; 12:cancers12061635. [PMID: 32575666 PMCID: PMC7352810 DOI: 10.3390/cancers12061635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.
Collapse
Affiliation(s)
- Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Carla Musa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Manuela Porru
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ilaria Iannetti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Carlo Leonetti
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
- Correspondence:
| |
Collapse
|
16
|
He Z, Yan T, Yuan Y, Yang D, Yang G. miRNAs and lncRNAs in Echinococcus and Echinococcosis. Int J Mol Sci 2020; 21:ijms21030730. [PMID: 31979099 PMCID: PMC7037763 DOI: 10.3390/ijms21030730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/04/2023] Open
Abstract
Echinococcosis are considered to be potentially lethal zoonotic diseases that cause serious damage to hosts. The metacestode of Echinococcus multilocularis and E. granulosus can result in causing the alveolar and cystic echinococcoses, respectively. Recent studies have shown that non-coding RNAs are widely expressed in Echinococcus spp. and hosts. In this review, the two main types of non-coding RNAs—long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and the wide-scale involvement of these molecules in these parasites and their hosts were discussed. The expression pattern of miRNAs in Echinococcus spp. is species- and developmental stage-specific. Furthermore, common miRNAs were detected in three Echinococcus spp. and their intermediate hosts. Here, we primarily focus on recent insights from transcriptome studies, the expression patterns of miRNAs and lncRNAs, and miRNA-related databases and techniques that are used to investigate miRNAs in Echinococcus and echinococcosis. This review provides new avenues for screening therapeutic and diagnostic markers.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Correspondence: ; Tel.: +86-028-8278-3043
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;
| |
Collapse
|
17
|
Piccinin E, Arconzo M, Graziano G, Vacca M, Peres C, Bellafante E, Villani G, Moschetta A. Hepatic microRNA Expression by PGC-1α and PGC-1β in the Mouse. Int J Mol Sci 2019; 20:ijms20225735. [PMID: 31731670 PMCID: PMC6888418 DOI: 10.3390/ijms20225735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The fine-tuning of liver metabolism is essential to maintain the whole-body homeostasis and to prevent the onset of diseases. The peroxisome proliferator-activated receptor-γ coactivators (PGC-1s) are transcriptional key players of liver metabolism, able to regulate mitochondrial function, gluconeogenesis and lipid metabolism. Their activity is accurately modulated by post-translational modifications. Here, we showed that specific PGC-1s expression can lead to the upregulation of different microRNAs widely implicated in liver physiology and diseases development and progression, thus offering a new layer of complexity in the control of hepatic metabolism.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy or
| | - Maria Arconzo
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Giusi Graziano
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Michele Vacca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| | - Claudia Peres
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Elena Bellafante
- Fondazione Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy;
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy or
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
- Correspondence: or ; Tel.: +39-080-559-3262
| |
Collapse
|
18
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12:51. [PMID: 31126316 PMCID: PMC6534901 DOI: 10.1186/s13045-019-0734-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor of the immature myeloid hematopoietic cells in the bone marrow (BM). It is a highly heterogeneous disease, with rising morbidity and mortality in older patients. Although researches over the past decades have improved our understanding of AML, its pathogenesis has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are three noncoding RNA (ncRNA) molecules that regulate DNA transcription and translation. With the development of RNA-Seq technology, more and more ncRNAs that are closely related to AML leukemogenesis have been discovered. Numerous studies have found that these ncRNAs play an important role in leukemia cell proliferation, differentiation, and apoptosis. Some may potentially be used as prognostic biomarkers. In this systematic review, we briefly described the characteristics and molecular functions of three groups of ncRNAs, including lncRNAs, miRNAs, and circRNAs, and discussed their relationships with AML in detail.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|