1
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
2
|
Shi L, Zhang X, Mao L, Zhang Y. Anti-neoplastic effect of heterophyllin B on ovarian cancer via the regulation of NRF2/HO-1 in vitro and in vivo. Tissue Cell 2024; 91:102566. [PMID: 39341007 DOI: 10.1016/j.tice.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Heterophyllin B (HB) is a cyclic peptide with anti-neoplastic effect on many cancers. However, its effect and mechanism of action in ovarian cancer cells are still unknown. PURPOSE The primary objective of this study was to assess the impact of HB on the proliferation of ovarian cancer (OC) cells and delve into the underlying mechanisms involved. METHODS We performed CCK-8 assays, HE staining, KI67 staining, clonogenic formation assays, Annexin V-FITC/PI staining, tumor invasion assays, and migration assays to detect the effects of HB on cell viability, proliferation, apoptosis, migration, and invasion in ovarian cancer cells. Additionally, real-time fluorescent quantitative PCR (qPCR) and Western blotting were utilized for verification. The expression of NF-E2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1/HO-1) signaling molecules was detected using qPCR and Western blotting. A specific inducer, Hemin, was used to activate HO-1 and Nrf2 overexpression, in order to verify the pharmacological mechanism of HB on ovarian cancer cells. The binding relationship between HB and NRF2 was investigated through molecular docking. RESULTS HB treatment inhibited the viability of OC cells, meanwhile it showed suppressive effect on the proliferation, migration, and invasion of OC cells, Meanwhile, HB could promote the apoptosis of tumor cells. For the mechanisms, we found that HB treatment could significantly down-regulate the levels of NRF2/HO-1. Consistent with the results of in vitro experiments, administration of HB significantly delayed tumor growth in OVCAR8 xenografted nude mice, and inhibited the expression of Ki67, Nrf2 and HO-1. CONCLUSION This study demonstrated that HB had anti-neoplastic effect on OC by inhibiting Nrf2/HO-1 signaling pathway and may be a potential drug for the treatment of OC.
Collapse
Affiliation(s)
- Linyu Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province 226001, China
| | - Xiaoyu Zhang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
3
|
Heterophyllin B inhibits the malignant phenotypes of gastric cancer cells via CXCR4. Hum Cell 2023; 36:676-688. [PMID: 36539682 DOI: 10.1007/s13577-022-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Heterophyllin B (HB) is a cyclic lipopeptide that has been shown to have anticancer effects. This study intended to further explore the effects and modulatory mechanism of HB in gastric cancer (GC) cells. The binding relationship between HB and CXCR4 was investigated by network pharmacological analysis, molecular docking, and cellular thermal shift assay (CETSA)-WB assay. Cellular assays revealed that HB could restrain GC cell viability, proliferation, invasion and migration by binding to CXCR4. Further studies presented that HB could suppress PI3K/AKT signaling pathway via binding to CXCR4, thus repressing PD-L1 expression. In vivo experiments in nude mice demonstrated that HB constrained PI3K/AKT signaling pathway to suppress GC cell metastasis and PD-L1 expression. In summary, the key target of HB in GC treatment was CXCR4. Cell experiments were employed for the investigation of the mechanism by which HB repressed GC cells. The results confirmed that HB could constrain the malignant progression of GC by the binding of HB into CXCR4 and suppressed PD-L1 expression via hampering PI3K/AKT signaling pathway.
Collapse
|
4
|
Sanlier N, Kocabas Ş, Erdogan K, Sanlier NT. Effects of curcumin, its analogues, and metabolites on various cancers: focusing on potential mechanisms. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Ankara Gulhane Health Application and Research Center, Health Sciences University, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Samimi-Dehkordi N, Taheri G, Afzali S, Sazegar H, Shakeri F. Co-expression network analysis for renal cell carcinoma genes and in vitro confirmation of their expression in cell model in the presence of curcumin. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular mechanism. CHINESE HERBAL MEDICINES 2022; 14:244-253. [PMID: 36117672 PMCID: PMC9476644 DOI: 10.1016/j.chmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
|
7
|
Almalki Z, Algregri M, Alhosin M, Alkhaled M, Damiati S, Zamzami MA. In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line. BRAZ J BIOL 2021; 83:e248708. [PMID: 34468533 DOI: 10.1590/1519-6984.248708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumour of Head and Neck Cancer (HNC). The recent therapeutic approaches used to treat cancer have adverse side effects. The natural agents exhibiting anticancer activities are generally considered to have a robust therapeutic potential. Curcuminoids, one of the major active compounds of the turmeric herb, are used as a therapeutic agent for several diseases including cancer. In this study, the cytotoxicity of curcuminoids was investigated against OSCC cell line HNO97. Our data showed that curcuminoids significantly inhibits the proliferation of HNO97 in a time and dose-dependent manner (IC50=35 μM). Cell cycle analysis demonstrated that curcuminoids increased the percentage of G2/M phase cell populations in the treated groups. Treating HNO97 cells with curcuminoids led to cell shrinking and increased detached cells, which are the typical appearance of apoptotic cells. Moreover, flow cytometry analysis revealed that curcuminoids significantly induced apoptosis in a time-dependent manner. Furthermore, as a response to curcuminoids treatment, comet tails were formed in cell nuclei due to the induction of DNA damage. Curcuminoids treatment reduced the colony formation capacity of HNO97 cells and induced morphological changes. Overall, these findings demonstrate that curcuminoids can in vitro inhibit HNC proliferation and metastasis and induce apoptosis.
Collapse
Affiliation(s)
- Z Almalki
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M Algregri
- King Abdulaziz University, King Fahad Medical Research Canter, Jeddah, Saudi Arabia
| | - M Alhosin
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M Alkhaled
- University of Jeddah, Faculty of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - S Damiati
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Zamzami
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Moreira J, Almeida J, Saraiva L, Cidade H, Pinto M. Chalcones as Promising Antitumor Agents by Targeting the p53 Pathway: An Overview and New Insights in Drug-Likeness. Molecules 2021; 26:molecules26123737. [PMID: 34205272 PMCID: PMC8233907 DOI: 10.3390/molecules26123737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The p53 protein is one of the most important tumor suppressors that are frequently inactivated in cancer cells. This inactivation occurs either because the TP53 gene is mutated or deleted, or due to the p53 protein inhibition by endogenous negative regulators, particularly murine double minute (MDM)2. Therefore, the reestablishment of p53 activity has received great attention concerning the discovery of new cancer therapeutics. Chalcones are naturally occurring compounds widely described as potential antitumor agents through several mechanisms, including those involving the p53 pathway. The inhibitory effect of these compounds in the interaction between p53 and MDM2 has also been recognized, with this effect associated with binding to a subsite of the p53 binding cleft of MDM2. In this work, a literature review of natural and synthetic chalcones and their analogues potentially interfering with p53 pathway is presented. Moreover, in silico studies of drug-likeness of chalcones recognized as p53-MDM2 interaction inhibitors were accomplished considering molecular descriptors, biophysiochemical properties, and pharmacokinetic parameters in comparison with those from p53-MDM2 in clinical trials. With this review, we expect to guide the design of new and more effective chalcones targeting the p53 pathway.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Joana Almeida
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| |
Collapse
|
10
|
Shetty NP, Prabhakaran M, Srivastava AK. Pleiotropic nature of curcumin in targeting multiple apoptotic-mediated factors and related strategies to treat gastric cancer: A review. Phytother Res 2021; 35:5397-5416. [PMID: 34028111 DOI: 10.1002/ptr.7158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the major reasons for cancer-associated death and exhibits the second-highest mortality rate worldwide. Several advanced approaches have been designed to treat GC; however, these strategies possess many innate complications. In view of this, the upcoming research relying on natural products could result in designing potential anticancer agents with fewer side effects. Curcumin, isolated from the rhizomes of Curcuma longa L. has several medicinal properties like antiinflammatory, antioxidant, antiapoptotic, antitumor, and antimetastatic. Such pleiotropic nature of curcumin impedes the invasion and proliferation of GC by targeting several oncogenic factors like p23, human epidermal factor receptor2 including Helicobacter pylori. The side effect of chemotherapy, that is, chemotherapeutic resistance and radiotherapy could be reduced combination therapy of curcumin. Moreover, the photodynamic therapy of curcumin destroys the cancer cells without affecting normal cells. However, further more potential studies are required to establish the potent efficacy of curcumin in the treatment of GC. The current review details the anticancer activities of curcumin and related strategies which could be employed to treat GC with additional focus on its inhibitory properties against viability, proliferation, and migration of GC cells through cell cycle arrest and stimulation by apoptosis-mediated factors.
Collapse
Affiliation(s)
- Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Manoj Prabhakaran
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | | |
Collapse
|
11
|
Naji M, Soroudi S, Akaberi M, Sahebkar A, Emami SA. Updated Review on the Role of Curcumin in Gastrointestinal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:55-89. [PMID: 33861437 DOI: 10.1007/978-3-030-64872-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Malignant conditions of the gastrointestinal tract and accessory organs of digestion, including the oral cavity, esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus, are referred to as gastrointestinal cancers. Curcumin is a natural compound derived from turmeric with a wide range of biological activities. Several in vitro and in vivo studies have investigated the effects of curcumin on gastrointestinal cancers. In the current review, we aimed to provide an updated summary on the recent findings regarding the beneficial effects of curcumin on different gastrointestinal cancers in the recent decade. For this purpose, ScienceDirect," "Google Scholar," "PubMed," "ISI Web of Knowledge," and "Wiley Online Library" databases were searched using "curcumin", "cancer", and "gastrointestinal organs" as keywords. In vitro studies performed on different gastrointestinal cancerous cell lines have shown that curcumin can inhibit cell growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis and autophagy by interacting with multiple molecular targets. In vivo studies performed in various animal models have confirmed mainly the chemopreventive effects of curcumin. Several nano-formulations have been proposed to improve the bioavailability of curcumin and increase its absorption. Moreover, curcumin has been used in combinations with many anti-tumor drugs to increase their anticarcinogenic properties. Taken together, curcumin falls within the category of plant-derived substances capable of preventing or treating gastrointestinal cancers. Further studies, particularly clinical trials, on the efficacy and safety of curcumin are suggested in this regard.
Collapse
Affiliation(s)
- Melika Naji
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Soroudi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
13
|
Rutz J, Maxeiner S, Justin S, Bachmeier B, Bernd A, Kippenberger S, Zöller N, Chun FKH, Blaheta RA. Low Dosed Curcumin Combined with Visible Light Exposure Inhibits Renal Cell Carcinoma Metastatic Behavior In Vitro. Cancers (Basel) 2020; 12:cancers12020302. [PMID: 32012894 PMCID: PMC7072295 DOI: 10.3390/cancers12020302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recent documentation shows that a curcumin-induced growth arrest of renal cell carcinoma (RCC) cells can be amplified by visible light. This study was designed to investigate whether this strategy may also contribute to blocking metastatic progression of RCC. Low dosed curcumin (0.2 µg/mL; 0.54 µM) was applied to A498, Caki1, or KTCTL-26 cells for 1 h, followed by exposure to visible light for 5 min (400–550 nm, 5500 lx). Adhesion to human vascular endothelial cells or immobilized collagen was then evaluated. The influence of curcumin on chemotaxis and migration was also investigated, as well as curcumin induced alterations of α and β integrin expression. Curcumin without light exposure or light exposure without curcumin induced no alterations, whereas curcumin plus light significantly inhibited RCC adhesion, migration, and chemotaxis. This was associated with a distinct reduction of α3, α5, β1, and β3 integrins in all cell lines. Separate blocking of each of these integrin subtypes led to significant modification of tumor cell adhesion and chemotactic behavior. Combining low dosed curcumin with light considerably suppressed RCC binding activity and chemotactic movement and was associated with lowered integrin α and β subtypes. Therefore, curcumin combined with visible light holds promise for inhibiting metastatic processes in RCC.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
- Correspondence: ; Tel.: +49-69-6301-7109; Fax: +49-69-6301-7108
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Saira Justin
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Beatrice Bachmeier
- Institute of Laboratory Medicine, University Hospital, Ludwig-Maximilians-University, 80539 Munich, Germany;
| | - August Bernd
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Nadja Zöller
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| |
Collapse
|
14
|
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol 2019; 128:240-255. [PMID: 30991130 DOI: 10.1016/j.fct.2019.04.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death across the world. Different environmental and anthropogenic factors initiate mutations in different functional genes of growth factors and their receptors, anti-apoptotic proteins, self-renewal developmental proteins, tumor suppressors, transcription factors, etc. This phenomenon leads to altered protein homeostasis of the cell which in turn induces cancer initiation, development, progression and survival. From ancient times various natural products have been used as traditional medicine against different diseases. Natural products are readily applicable, inexpensive, accessible and acceptable therapeutic approach with minimum cytotoxicity. As most of the target-specific anticancer drugs failed to achieve the expected result so far, new multi-targeted therapies using natural products have become significant. In this review, we have summarized the efficacy of different natural compounds against cancer. They are capable of modulating cancer microenvironment and diverse cell signaling cascades; thus playing a major role in combating cancer. These compounds are found to be effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway and Hedgehog pathway). This review article is expected to be helpful in understanding the recent progress of natural product research for the development of anticancer drug.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
15
|
Liu Y, Wang X, Zeng S, Zhang X, Zhao J, Zhang X, Chen X, Yang W, Yang Y, Dong Z, Zhu J, Xu X, Tian F. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:303. [PMID: 30518397 PMCID: PMC6280482 DOI: 10.1186/s13046-018-0959-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Background We and others have previously shown that the STAT3 signaling pathway is activated in some esophageal squamous cell carcinoma (ESCC) cells and is required for the survival and growth of these primary ESCC-derived xenografts. It has also been shown that the natural polyphenol curcumin is an effective anti-tumor agent. Methods Luciferase assay and immunoblotting were performed to examine whether curcumin suppressed STAT3 signaling. CCK-8 assay and xenografts were utilized for analyzing ESCC cell growth in culture and mice. Soft agar assay was carried out to determine the colony formation ability of ESCC cells in the presence or absence of curcumin. Cell death and cell cycle were assessed by In CELL Analyzer 2000. Immunohistochemistry and TUNEL assay were used for detecting apoptosis in ESCC tisuses. Molecular docking was performed to evaluate the interaction of curcumin with JAK2. JAK2 activity was assessed using an in vitro cell-free system. HE staining was used to evaluate the ESCC tissues. Results The natural polyphenol curcumin inhibited STAT3 phosphorylation rapidly and blocked STAT3-mediated signaling in ESCC cells. It also induced growth arrest and apoptosis in cultured ESCC cells, which were attenuated by enforced expression of STAT3. Furthermore, curcumin preferentially blocked the growth of primary ESCC-derived xenografts that harbored activated STAT3. Conclusions Curcumin is able to exert anti-tumor action through inhibiting the STAT3 signaling pathway. Giving its wide use in traditional medicines with low toxicity and few adverse reactions, it is conceivable that curcumin might be further explored as a unique STAT3 inhibitor for anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China.,Clinical Research Center, People's Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinhua Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiane Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Xin Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|