1
|
Latifi Z, Nikanfar S, Khodavirdilou R, Beirami SM, Khodavirdilou L, Fattahi A, Oghbaei F. MicroRNAs as diagnostic biomarkers in diabetes male infertility: a systematic review. Mol Biol Rep 2024; 52:90. [PMID: 39739064 DOI: 10.1007/s11033-024-10197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This study conducts an in-depth review of the correlation between testis tissue changes and circulating microRNAs (miRNA) in diabetes-induced male reproductive complications, drawing upon both animal and clinical studies. The original articles published in English that specifically investigate miRNAs linked to male infertility in humans or animals with either type I or ΙΙ diabetes mellitus were included. The relevant articles were gathered from the PubMed, Google Scholar, Cochrane Library, and ScienceDirect databases. The quality of study was assessed utilizing the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Prevalence Studies. We collected an overall number of 1989 citations relating to our research subject. Following the elimination of articles based on the criteria, a total of 20 papers were included in the study. Aberrant expression profiles of 25 miRNAs were identified in diabetes associated with male reproductive issues, with 15 miRNAs exhibiting increased expression and 10 miRNAs showing decreased expression. Among the chosen publications, eighteen were identified as low-risk and two were classed as moderate quality. The dysregulated miRNAs were linked to testicular injury, disrupted steroid production, decreased sperm development and quality, and erectile dysfunction. The results demonstrate that the miRNA-mRNA network is linked to the pathological progression of diabetic testicular damage or erectile dysfunction. From a therapeutic perspective, the identification of circulating miRNAs could be beneficial in the timely identification and prevention of diabetes problems, such as diabetes-induced male infertility. Among all signaling pathways influenced by modified miRNAs, the Bax-caspase-3, MAPK, PI3K-Akt, and eNOS-cGMP-PKC were the main deregulated pathways.
Collapse
Affiliation(s)
- Zeinab Latifi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Rasa Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
2
|
Casanova MR, Mota P, Vala H, Nóbrega C, Morais ADS, Silva CS, Barros AA, Reis RL, Lima E, Martins A, Neves NM. Functional recovery of injured cavernous nerves achieved through endogenous nerve growth factor-containing bioactive fibrous membrane. Acta Biomater 2023; 168:416-428. [PMID: 37467838 DOI: 10.1016/j.actbio.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Radical prostatectomy is a highly successful treatment for prostate cancer, among the most prevalent manifestations of the illness. Damage of the cavernous nerve (CN) during prostatectomy is the main cause of postoperative erectile dysfunction (ED). In this study, the capability of a personalized bioactive fibrous membrane to regenerate injured CN was investigated. The fibrous membrane bioactivity is conferred by the selectively bound nerve growth factor (NGF) present in the rat urine. In a rat model of bilateral CN crush, the implanted bioactive fibrous membrane induces CN regeneration and restoration of erectile function, showing a significantly increased number of smooth muscle cells and content of endothelial and neuronal nitric oxide synthases (eNOS; nNOS). In addition, the bioactive fibrous membrane promotes nerve regeneration by increasing the number of myelinated axons and nNOS-positive cells, therefore reversing the CN fibrosis found in untreated rats or rats treated with a bare fibrous membrane. Therefore, this personalized regenerative strategy could overcome the recognized drawbacks of currently available treatments for CN injuries. It may constitute an effective treatment for prostate cancer patients suffering from ED after being subject to radical prostatectomy. STATEMENT OF SIGNIFICANCE: The present work introduces a unique strategy to address post-surgical ED resulting from CN injury during pelvic surgery (e.g., radical prostatectomy, radical cystoprostatectomy, abdominoperineal resection). It comprises a bioactive and cell-free fibrous implant, customized to enhance CN recovery. Pre-clinical results in a rat model of bilateral CN crush demonstrated that the bioactive fibrous implant can effectively heal injured CN, and restore penile structure and function. This implant selectively binds NGF from patient fluids (i.e. urine) due to its functionalized surface and high surface area. Moreover, its local implantation reduces adverse side effects. This tailored regenerative approach has the potential to revolutionize the treatment of ED in prostate cancer patients following radical prostatectomy, overcoming current treatment limitations.
Collapse
Affiliation(s)
- Marta R Casanova
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Paulo Mota
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Helena Vala
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Carmen Nóbrega
- Agrarian Superior School of Viseu (ESAV), Polytechnic Institute of Viseu, Viseu 3500-606, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Portugal
| | - Alain da Silva Morais
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Catarina S Silva
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Alexandre A Barros
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Rui L Reis
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Estevão Lima
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; Department of Urology, Hospital of Braga, E.P.E, Braga, Portugal
| | - Albino Martins
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group; I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, Zona Industrial da Gandra - Avepark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal.
| |
Collapse
|
3
|
Song J, Wang J, Liu K, Xu W, Sun T, Liu J. The role of microRNAs in erectile dysfunction: From pathogenesis to therapeutic potential. Front Endocrinol (Lausanne) 2022; 13:1034043. [PMID: 36387873 PMCID: PMC9640492 DOI: 10.3389/fendo.2022.1034043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Erectile dysfunction (ED) is a common male sexual dysfunction disease, and it was predicted that the number of ED patients worldwide will reach 322 million by 2025. However, the pathogenesis of ED is complex and the current treatment options are still limited, so it is urgent to explore new treatment strategies. Recent studies have shown that microRNAs (miRNAs) play an important role in ED, and these single-stranded non-coding small RNA molecules are involved in key pathophysiological processes in the occurrence and development of ED. Therefore, miRNAs have remarkable potential as therapeutic targets in ED. Here, this review introduces the physiological basis of erectile function and the pathophysiological changes in ED and summarizes the current knowledge on the expression, biological functions, and molecular mechanisms of miRNAs in ED, especially the potential of miRNA-targeted therapies to improve ED. This review will provide a comprehensive view of the role of miRNAs in the pathogenesis of ED and the potential value of miRNAs in the treatment of ED.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
5
|
Luu BE, Mossa AH, Cammisotto PG, Uri Saragovi H, Campeau L. Modulation of diabetic kidney disease markers by an antagonist of p75 NTR in streptozotocin-treated mice. Gene 2022; 838:146729. [PMID: 35835402 DOI: 10.1016/j.gene.2022.146729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Two therapeutic agents targeting p75NTR pathways have been recently developed to alleviate retinopathy and bladder dysfunction in diabetes mellitus (DM), namely the small molecule p75NTR antagonist THX-B and a monoclonal antibody (mAb) that neutralizes the receptor ligand proNGF. We herein explore these two components in the context of diabetic kidney disease (DKD). Streptozotocin-injected mice were treated for 4 weeks with THX-B or anti-proNGF mAb. Kidneys were taken for quantification of microRNAs and mRNAs by RT-qPCR and for detection of proteins by immunohistochemistry, immunoblotting and ELISA. Blood was sampled to measure plasma levels of urea, creatinine, and albumin. DM led to increases in plasma concentrations of urea and creatinine and decreases in plasma albumin. Receptor p75NTR was expressed in kidneys and its expression was decreased by DM. All these changes were reversed by THX-B treatment while the effect of mAb was less pronounced. MicroRNAs tightly linked to DKD (miR-21-5p, miR-214-3p and miR-342-3p) were highly expressed in diabetic kidneys compared to healthy ones. Also, miR-146a, a marker of kidney inflammation, and mRNA levels of Fn-1 and Nphs, two markers of fibrosis and inflammation, were elevated in DM. Treatments with THX-B or mAb partially or completely reduced the expression of the aforementioned microRNAs and mRNAs. P75NTR antagonism and proNGF mAb might constitute new therapeutic tools to treat or slow down the progression of kidney disease in DM, along with other diabetic related complications. The translational potential of these strategies is currently being investigated.
Collapse
Affiliation(s)
- Bryan E Luu
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Abubakr H Mossa
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | | | - H Uri Saragovi
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Pharmacology and Therapeutics, McGill University, Canada; Ophthalmology and Vision Sciences. McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Lysanne Campeau
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Division of Urology, Department of Surgery, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Xu W, Jiang H, Liu J, Li H. Non-Coding RNAs: New Dawn for Diabetes Mellitus Induced Erectile Dysfunction. Front Mol Biosci 2022; 9:888624. [PMID: 35813828 PMCID: PMC9257010 DOI: 10.3389/fmolb.2022.888624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Erectile dysfunction (ED) is a common sexual dysfunction in males, with multifactorial alterations which consist of psychological and organic. Diabetes mellitus (DM) induced erectile dysfunction (DMED) is a disconcerting and critical complication of DM, and remarkably different from non-diabetic ED. The response rate of phosphodiesterase type 5 inhibitor (PDE5i), a milestone for ED therapy, is far from satisfactory in DMED. Unfortunately, the contributing mechanisms of DMED remains vague. Hence, It is urgent to seek for novel prospective biomarkers or targets of DMED. Numerous studies have proved that non-coding RNAs (ncRNAs) play essential roles in the pathogenesis process of DM, which comprise of long non-coding RNAs (lncRNAs) and small non-coding RNAs (sncRNAs) like microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). However, the implications of ncRNAs in DMED are still understudied. This review highlights the pathophysiology of DMED, summarizes identified mechanisms of ncRNAs associated with DMED and covers the topic of perspectives for ncRNAs in DMED.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hao Li,
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hao Li,
| |
Collapse
|
7
|
Tian L, Sun S, Li W, Yuan L, Wang X. Down-regulated microRNA-141 facilitates osteoblast activity and inhibits osteoclast activity to ameliorate osteonecrosis of the femoral head via up-regulating TGF-β2. Cell Cycle 2020; 19:772-786. [PMID: 32089067 DOI: 10.1080/15384101.2020.1731053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a pathological process that initially occurs in the weight-bearing field of the femoral head. Due to the unknown pathogenesis, this study was for the investigation of the effect of microRNA-141 (miR-141) targeting transforming growth factor-β2 (TGF-β2) on regulating osteoblast activity and osteoclast activity in steroid-induced ONFH.Tissues of ONFH and normal femoral head were collected for detecting the expression of miR-141 and TGF-β2. A rat model of ONFH was constructed by injection of hormones, and transfected with miR-141 inhibitors and overexpressed TGF-β2. The apoptosis of bone cells was detected by TUNEL staining. The expression of osteoprotegerin (OPG), osteoprotegerin ligand (OPGL), Bcl-2, Bax, Runx2, BMP2 and RANK were detected.Highly expressed miR-141 and lowly expressed TGF-β2 existed in femoral head tissues in ONFH. Inhibited miR-141 resulted in elevated TGF-β2 in femoral head tissues in ONFH of rats. Depressed miR-141 or overexpressed TGF-β2 inhibited the apoptosis of bone cells of rats with ONFH and induced elevated OPG, Bcl-2, BMP2, Runx2 and declined OPGL, Bax and RANK expression in the femoral head tissues of rats with ONFH.Altogether, we find that down-regulated miR-141 promotes osteoblast activity and inhibits osteoclast activity to ameliorate ONFH via up-regulated TGF-β2 expression.
Collapse
Affiliation(s)
- Lei Tian
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Shui Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Wei Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Lin Yuan
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Xianquan Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| |
Collapse
|