1
|
Li S, Ye T, Hou Z, Wang Y, Hao Z, Chen J. FOXO6: A unique transcription factor in disease regulation and therapeutic potential. Pharmacol Res 2025; 214:107691. [PMID: 40058512 DOI: 10.1016/j.phrs.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
FOXO6, a unique member of the Forkhead box O (FOXO) transcription factor family, has emerged as a pivotal regulator in various physiological and pathological processes, including apoptosis, oxidative stress, autophagy, cell cycle control, and inflammation. Unlike other FOXO proteins, FOXO6 exhibits distinct regulatory mechanisms, particularly its inability to undergo classical nucleocytoplasmic shuttling. These unique properties suggest that FOXO6 may function through alternative pathways, positioning it as a novel research target. This review provides the first comprehensive review of FOXO6's biological functions and its roles in the progression of multiple diseases, such as cancer, metabolic disorders, neurodegenerative conditions, and cardiovascular dysfunction. We highlight FOXO6's interaction with critical signaling pathways, including PI3K/Akt, PPARγ, and TXNIP, and discuss its contributions to tumor progression, glucose and lipid metabolism, oxidative stress, and neuronal degeneration. Moreover, FOXO6's potential as a therapeutic target is explored, with particular emphasis on its ability to modulate drug resistance and its implications for disease treatment. Despite its promising therapeutic potential, the development of FOXO6-targeted therapies remains challenging due to overlapping functions within the FOXO family and the context-dependent nature of FOXO6's regulatory roles. This review underscores the need for further experimental and clinical studies to elucidate the molecular mechanisms underlying FOXO6's functions and to validate its application in disease prevention and treatment. By systematically analyzing current research, this review aims to provide a foundational reference for future studies on FOXO6, paving the way for novel therapeutic strategies targeting this unique transcription factor.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihua Hao
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Chen Y, Zhao T, Han M, Chen Y. Gigantol protects retinal pigment epithelial cells against high glucose-induced apoptosis, oxidative stress and inflammation by inhibiting MTDH-mediated NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2024; 46:33-39. [PMID: 37681978 DOI: 10.1080/08923973.2023.2247545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.
Collapse
Affiliation(s)
- You Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Zhao
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Mengyu Han
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Yi Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Parmar UM, Jalgaonkar MP, Kansara AJ, Oza MJ. Emerging links between FOXOs and diabetic complications. Eur J Pharmacol 2023; 960:176089. [PMID: 37838103 DOI: 10.1016/j.ejphar.2023.176089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Diabetes and its complications are increasing worldwide in the working population as well as in elders. Prolonged hyperglycemia results in damage to blood vessels of various tissues followed by organ damage. Hyperglycemia-induced damage in small blood vessels as in nephrons, retina, and neurons results in diabetic microvascular complications which involve nephropathy, retinopathy, and diabetic neuropathy. Additionally, damage in large blood vessels is considered as a macrovascular complication including diabetic cardiomyopathy. These long-term complications can result in organ failure and thus becomes the leading cause of diabetic-related mortality in patients. Members of the Forkhead Box O family (FOXO) are involved in various body functions including cell proliferation, metabolic processes, differentiation, autophagy, and apoptosis. Moreover, increasing shreds of evidence suggest the involvement of FOXO family members FOXO1, FOXO3, FOXO4, and FOXO6 in several chronic diseases including diabetes and diabetic complications. Hence, this review focuses on the role of FOXO transcription factors in the regulation of diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Aayush J Kansara
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Manisha J Oza
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
4
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wu X, Mu L, Dong Z, Wu J, Zhang S, Su J, Zhang Y. Hu-Zhang Qing-Mai Formulation anti-oxidative stress alleviates diabetic retinopathy: Network pharmacology analysis and in vitro experiment. Medicine (Baltimore) 2023; 102:e35034. [PMID: 37682156 PMCID: PMC10489428 DOI: 10.1097/md.0000000000035034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND In this study, the potential mechanism of the Hu-Zhang Qing-Mai Formulation (HZQMF) on diabetic retinopathy (DR) in inhibiting oxidative stress was explored through network pharmacology analysis and in vitro experiments. METHODS The Traditional Chinese Medicine Systematic Pharmacology Analysis Platform was used to retrieve the active pharmaceutical ingredients and targets of HZQMF. DR-related genes and oxidative stress-related genes were obtained from PharmGKB, TTD, OMIM, GeneCards, and Drugbank. STRING was used to construct a protein-protein interaction network to screen core targets. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed using R 4.0.3. Network topology analysis was carried out using Cytoscape 3.8.2. Finally, we looked into how well the main API protected human retinal pigment epithelial cells from damage brought on by hydrogen peroxide (H2O2). RESULTS Quercetin (Que) was identified as the primary API of HZQMF through network pharmacology analysis, while JUN, MAPK1, and STAT3 were identified as the primary hub genes. Kyoto encyclopedia of genes and genomes enrichment analysis showed that the AGE-RAGE signaling pathway may be crucial to the therapeutic process. In vitro experiments confirmed that Que increased cell vitality and inhibited apoptosis. CONCLUSION Que might significantly reduce H2O2-induced ARPE-19 cell injury by inhibiting apoptosis-related genes of the AGE-RAGE pathway (JUN, MAPK1, STAT3). This study lays the foundation for further research on HZQMF in treating DR.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Mu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhiguo Dong
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Su
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zuo M, Tong R, He X, Liu Y, Liu J, Liu S, Liu Y, Cao J, Ma L. FOXO signaling pathway participates in oxidative stress-induced histone deacetylation. Free Radic Res 2023; 57:47-60. [PMID: 36927283 DOI: 10.1080/10715762.2023.2190862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
High concentrations of antioxidants can exert pro-oxidative effects, elevate the level of intracellular reactive oxygen species (ROS), and cause oxidative stress in cells. We previously found that high concentrations of curcumin, a natural polyphenol antioxidant, elevated ROS levels and upregulated the expression of histone deacetylase 1 (HDAC1) in human gastric cancer cells (hGCCs); however, its potential mechanisms and subsequent functions have not been elucidated. In the present study, we treated hGCCs with high concentrations of curcumin, detected several indicators of oxidative stress, and investigated the mechanism of curcumin-treatment-mediated HDAC1 upregulation and its effect on histone acetylation. The results showed that curcumin treatment caused oxidative stress in hGCCs and upregulated HDAC1/2 expression via the forkhead box O (FOXO) signaling pathway, ultimately leading to the deacetylation of histones in hGCCs. Moreover, HDAC1/2 mediates the deacetylation of FOXOs and promotes their transcription activities, implying a positive feedback loop between FOXOs and HDAC1/2. These findings present a mechanism by which oxidative stress induces histone deacetylation in hGCCs.
Collapse
Affiliation(s)
- Mengna Zuo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ruiying Tong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiaoying He
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yang Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiwei Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Shujun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Wei L, Sun X, Fan C, Li R, Zhou S, Yu H. The pathophysiological mechanisms underlying diabetic retinopathy. Front Cell Dev Biol 2022; 10:963615. [PMID: 36111346 PMCID: PMC9468825 DOI: 10.3389/fcell.2022.963615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus (DM), which can lead to visual impairment and even blindness in severe cases. DR is generally considered to be a microvascular disease but its pathogenesis is still unclear. A large body of evidence shows that the development of DR is not determined by a single factor but rather by multiple related mechanisms that lead to different degrees of retinal damage in DR patients. Therefore, this article briefly reviews the pathophysiological changes in DR, and discusses the occurrence and development of DR resulting from different factors such as oxidative stress, inflammation, neovascularization, neurodegeneration, the neurovascular unit, and gut microbiota, to provide a theoretical reference for the development of new DR treatment strategies.
Collapse
Affiliation(s)
- Lindan Wei
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Xin Sun
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shuanglong Zhou
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
- *Correspondence: Hongsong Yu,
| |
Collapse
|
8
|
Jin A, Zhang Q, Li S, Li B. Downregulation of FOXO6 alleviates hypoxia-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2 activation via upregulation of SIRT6. J Bioenerg Biomembr 2020; 52:409-419. [PMID: 33123950 DOI: 10.1007/s10863-020-09856-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
Forkhead box protein O6 (FOXO6) has been recently identified as a novel regulator of oxidative stress in multiple pathological processes. However, whether FOXO6 participates in the regulation of oxidative stress of myocardial infarction is unclear. The present study was performed to evaluate the potential role of FOXO6 in regulating hypoxia-induced apoptosis and oxidative stress in cardiomyocytes in vitro. Our results demonstrated that FOXO6 expression was highly elevated in cardiomyocytes exposed to hypoxia. Downregulation of FOXO6 expression by the siRNA-mediated gene knockdown in hypoxia-exposed cardiomyocytes increased cell viability, while repressing apoptosis and reactive oxygen species (ROS) production. In contrast, overexpression of FOXO6 enhanced the sensitivity of cardiomyocytes to hypoxia-induced injury. Further, in-depth research revealed that knockdown of FOXO6 promoted the expression of sirtuin6 (SIRT6) and enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant signaling. Moreover, SIRT6 inhibition markedly blocked the FOXO6 knockdown-induced promotion effect on Nrf2 activation. In addition, Nrf2 inhibition partially reversed the FOXO6 knockdown-mediated protective effect against hypoxia-induced cardiomyocyte injury. Taken together, the findings of our study demonstrate that knockdown of FOXO6 is capable of protecting cardiomyocytes from hypoxia-induced apoptosis and oxidative stress by enhancing Nrf2 activation via upregulation of SIRT6. Our study highlights a potential role of FOXO6 in myocardial infarction and suggests it as an attractive target for cardioprotection.
Collapse
Affiliation(s)
- Aiping Jin
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Qianrong Zhang
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| | - Shulin Li
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| | - Bing Li
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| |
Collapse
|
9
|
Molecular characterization and expression analysis of foxo3l in response to exogenous hormones in black rockfish (Sebastes schlegelii). Gene 2020; 753:144777. [PMID: 32428695 DOI: 10.1016/j.gene.2020.144777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
As a crucial member of the Forkhead Box family, class O (FoxO) plays an essential role in growth, cell differentiation, metabolism, immunization, and apoptosis. Meanwhile, FoxO3 is the primary regulator and effective inhibitor of primordial follicle activation. In this study, seven foxo genes were identified in black rockfish (Sebastes schlegelii), including two foxo1 genes (foxo1a, foxo1b), two foxo3 genes (foxo3, foxo3l), one foxo4 gene, and two foxo6 genes (foxo6a, foxo6b). foxo3l was derived from teleost-specific whole-genome duplication events. Evaluation of tissue expression pattern revealed that foxo3l displayed sexually dimorphic expression with a high level in the ovary and spatial expression only in the cytoplasm of follicle cells and oocytes. When the ovaries were stimulated by estrogen and gonadotropin, foxo3l expression was remarkably reduced, and the effect of androgen was completely different. We considered that foxo3l lost its ability to inhibit follicular precocity because of mass ovulation by hormone stimulation, resulting in its decreased expression. Such evidence indicated that foxo3l is an important regulator of reproduction-related functions in black rockfish. This study provides new insights into foxo3l genes for further functional research in teleost.
Collapse
|
10
|
Pang L, Yang K, Zhang Z. High-glucose environment accelerates annulus fibrosus cell apoptosis by regulating endoplasmic reticulum stress. Biosci Rep 2020; 40:BSR20200262. [PMID: 32515472 PMCID: PMC7328627 DOI: 10.1042/bsr20200262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is an important risk factor of intervertebral disc degeneration. However, how DM affects annulus fibrosus (AF) biology remains unclear. The present study was aimed to investigate the effects and mechanism of high glucose on AF cell biology. Rat AF cells were cultured in baseline medium and culture medium with 0.2 M glucose. The inhibitor 4-PBA was added along with the high glucose culture medium to study the role of endoplasmic reticulum (ER) stress in this process. Compared with the control cells, high glucose significantly increased cell apoptosis ratio and caspase-3/9 activity, up-regulated mRNA/protein expression of Bax and caspase-3/cleaved caspase-3, but down-regulated mRNA/protein expression of Bcl-2. Moreover, high glucose increased mRNA and protein expression of CHOP, ATF-6 and GRP78. However, once ER stress was inhibited by the inhibitor 4-PBA in the high glucose group, cell apoptosis ratio and caspase-3/9 activity were decreased, mRNA/protein expression of Bax and caspase-3/cleaved caspase-3 was down-regulated, but mRNA/protein expression of Bcl-2 was up-regulated. In conclusion, high glucose condition can promote AF cell apoptosis through inducing ER stress. The present study helps us understand the mechanism of disc degeneration in DM patients.
Collapse
Affiliation(s)
- Lianglong Pang
- Department of Spine Surgery, Liaocheng People's Hospital and
Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng
252000, Shandong, China
| | - Keshi Yang
- Department of Spine Surgery, Liaocheng People's Hospital and
Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng
252000, Shandong, China
| | - Zhi Zhang
- Department of Spine Surgery, Liaocheng People's Hospital and
Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng
252000, Shandong, China
| |
Collapse
|
11
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
12
|
Nanjaiah H, Vallikannan B. Lutein upregulates the PGC‐1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE‐19 cells and rat retina. Biotechnol Appl Biochem 2019; 66:999-1009. [DOI: 10.1002/bab.1821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hemalatha Nanjaiah
- Department of BiochemistryCSIR‐Central Food Technological Research Institute Mysuru India
| | - Baskaran Vallikannan
- Department of BiochemistryCSIR‐Central Food Technological Research Institute Mysuru India
| |
Collapse
|
13
|
Wang Y, Xue L, Li H, Shi J, Chen B. Knockdown of FOXO6 inhibits cell proliferation and ECM accumulation in glomerular mesangial cells cultured under high glucose condition. RSC Adv 2019; 9:1741-1746. [PMID: 35518006 PMCID: PMC9059738 DOI: 10.1039/c8ra10547b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Forkhead box O 6 (FOXO6), a FOX transcription factor, has been found to be involved in diabetes mellitus and related complications. However, the role of FOXO6 in diabetic nephropathy (DN) has not been fully understood. In the present study, we evaluated the functions of FOXO6 in high glucose (HG)-induced glomerular mesangial cells (MCs). The results showed that FOXO6 expression was significantly elevated in MCs after HG stimulation. Knockdown of FOXO6 by transfection with small interfering RNA (siRNA) targeting FOXO6 (siRNA-FOXO6) suppressed cell proliferation in MCs. The productions of extracellular matrix (ECM) components including collagen IV (Col IV) and fibronectin (FN) were markedly decreased after FOXO6 knockdown in MCs. Furthermore, knockdown of FOXO6 inhibited HG-induced activation of p38 MAPK signaling pathway in MCs. Collectively, these findings suggested that knockdown of FOXO6 inhibited cell proliferation and ECM accumulation in HG-induced MCs via inhibiting p38 MAPK signaling pathway. FOXO6 might be a beneficial therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Yunqian Wang
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Lei Xue
- Department of Endocrinology, Huaihe Hospital of Henan University Kaifeng 475000 Henan Province P. R. China
| | - Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| |
Collapse
|