1
|
Shaikh MAJ, Babu MA, Ghaboura N, Altamimi ASA, Sharma P, Rani R, Rani GB, Lakhanpal S, Ali H, Balaraman AK, Rawat S, Alzarea SI, Kazmi I. Non-coding RNAs: Key regulators of CDK and Wnt/β-catenin signaling in cancer. Pathol Res Pract 2024; 263:155659. [PMID: 39461246 DOI: 10.1016/j.prp.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Non-coding RNAs (ncRNAs) have become important modulators of gene expression and biological processes, contributing significantly to the initiation and spread of cancer. This study focuses on the complex interactions between ncRNAs and two major signaling pathways-Wnt/β-catenin signaling and cyclin-dependent kinase (CDK)-linked to cancer. We provide an overview of current research on the modulation of these pathways in many cancer types by distinct classes of ncRNAs, such as miRNAs, lncRNAs, and circRNAs. The review focuses on the processes by which ncRNAs regulate cancer cell survival, proliferation, and metastasis. These mechanical processes include CDK activity, the activation of the Wnt/β-catenin cascade and cell cycle advancement. We also discuss the importance of ncRNAs in drug resistance and treatment outcomes, as well as prognosis markers (diagnostic) and therapeutic targets for cancer. Understanding these complex regulatory networks may help in a large way to improve cancer research and diagnosis - but also perhaps treat patients more effectively.
Collapse
Affiliation(s)
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Nehmat Ghaboura
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P. O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pawan Sharma
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | - G B Rani
- KKR and KSR Institute of Technology and Sciences, Guntur, India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
3
|
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int J Mol Sci 2023; 24:13909. [PMID: 37762212 PMCID: PMC10530696 DOI: 10.3390/ijms241813909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/β-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/β-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/β-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/β-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/β-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/β-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.
Collapse
Affiliation(s)
- Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| |
Collapse
|
4
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Sheykhhasan M, Tanzadehpanah H, Ahmadieh Yazdi A, Mahaki H, Seyedebrahimi R, Akbari M, Manoochehri H, Kalhor N, Dama P. FLVCR1-AS1 and FBXL19-AS1: Two Putative lncRNA Candidates in Multiple Human Cancers. Noncoding RNA 2022; 9:1. [PMID: 36649030 PMCID: PMC9844485 DOI: 10.3390/ncrna9010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Mounting evidence supports the idea that one of the most critical agents in controlling gene expression could be long non-coding RNAs (lncRNAs). Upregulation of lncRNA is observed in the different processes related to pathologies, such as tumor occurrence and development. Among the crescent number of lncRNAs discovered, FLVCR1-AS1 and FBXL19-AS1 have been identified as oncogenes in many cancer progression and prognosis types, including cholangiocarcinoma, gastric cancer, glioma and glioblastoma, hepatocellular carcinoma, lung cancer, ovarian cancer, breast cancer, colorectal cancer, and osteosarcoma. Therefore, abnormal FBXL19-AS1 and FLVCR1-AS1 expression affect a variety of cellular activities, including metastasis, aggressiveness, and proliferation; (2) Methods: This study was searched via PubMed and Google Scholar databases until May 2022; (3) Results: FLVCR1-AS1 and FBXL19-AS1 participate in tumorigenesis and have an active role in impacting several signaling pathways that regulate cell proliferation, migration, invasion, metastasis, and EMT; (4) Conclusions: Our review focuses on the possible molecular mechanisms in a variety of cancers regulated by FLVCR1-AS1 and FBXL19-AS1. It is not surprising that there has been significant interest in the possibility that these lncRNAs might be used as biomarkers for diagnosis or as a target to improve a broader range of cancers in the future.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom 3716986466, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Amirhossein Ahmadieh Yazdi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom 3715614566, Iran
| | - Mohammad Akbari
- General Physician, Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran 4684161167, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom 3716986466, Iran
| | - Paola Dama
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
6
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
8
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Lin J, Zhai S, Zou S, Xu Z, Zhang J, Jiang L, Deng X, Chen H, Peng C, Zhang J, Shen B. Positive feedback between lncRNA FLVCR1-AS1 and KLF10 may inhibit pancreatic cancer progression via the PTEN/AKT pathway. J Exp Clin Cancer Res 2021; 40:316. [PMID: 34635142 PMCID: PMC8507233 DOI: 10.1186/s13046-021-02097-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. METHODS FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. RESULTS FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. CONCLUSIONS Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.
Collapse
Affiliation(s)
- Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Huang P, Zhu S, Liang X, Zhang Q, Liu C, Song L. Revisiting Lung Cancer Metastasis: Insight From the Functions of Long Non-coding RNAs. Technol Cancer Res Treat 2021; 20:15330338211038488. [PMID: 34431723 PMCID: PMC8392855 DOI: 10.1177/15330338211038488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Globally, lung cancer is the most common cause of cancer-related deaths. After
diagnosis at all stages, <7% of patients survive for 10 years. Thus,
diagnosis at later stages and the lack of effective and personalized drugs
reflect a significant need to better understand the mechanisms underpinning lung
cancer progression. Metastasis should be responsible for the high lethality and
recurrence rates seen in lung cancer. Metastasis depends on multiple crucial
steps, including epithelial–mesenchymal transition, vascular remodeling, and
colonization. Therefore, in-depth investigations of metastatic molecular
mechanisms can provide valuable insights for lung cancer treatment. Recently,
long noncoding RNAs (lncRNAs) have attracted considerable attention owing to
their complex roles in cancer progression. In lung cancer, multiple lncRNAs have
been reported to regulate metastasis. In this review, we highlight the major
molecular mechanisms underlying lncRNA-mediated regulation of lung cancer
metastasis, including (1) lncRNAs acting as competing endogenous RNAs, (2)
lncRNAs regulating the transduction of several signal pathways, and (3) lncRNA
coordination with enhancer of zeste homolog 2. Thus, lncRNAs appear to execute
their functions on lung cancer metastasis by regulating angiogenesis, autophagy,
aerobic glycolysis, and immune escape. However, more comprehensive studies are
required to characterize these lncRNA regulatory networks in lung cancer
metastasis, which can provide promising and innovative novel therapeutic
strategies to combat this disease.
Collapse
Affiliation(s)
- Peng Huang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Shaomi Zhu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| |
Collapse
|
11
|
Xie H, Wang J. MicroRNA-320a-containing exosomes from human umbilical cord mesenchymal stem cells curtail proliferation and metastasis in lung cancer by binding to SOX4. J Recept Signal Transduct Res 2021; 42:268-278. [PMID: 34096448 DOI: 10.1080/10799893.2021.1918166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exosomes from human umbilical cord mesenchymal stem cells (HUCMSCs) containing microRNAs (miRNAs) have been underscored as possible therapeutic options for cancers. Hence, our goal here was to investigate the relevance of miR-320a-containing exosomes from HUCMSCs to lung cancer. First, H1299 and H460 cells were co-cultured with the exosomes overexpressing miR-320a from HUCMSCs. The data displayed that HUCMSCs-secreted exosomes expressing miR-320a exerted anti-tumor effects in vitro and in vivo. Online analysis available at TargetScan database revealed that miR-320a bound to sex-determining region Y-box 4 (SOX4), and the luciferase reporter gene assay clarified this targeting relationship. Next, a β-catenin-specific agonist WAY-262611 was delivered into the H1299 and H460 cells to assess the effects of the Wnt/β-catenin pathway on lung cancer cellular processes. The results demonstrated that WAY-262611 potentiated lung cancer cell viability, invasion, and migration, but inhibited cell apoptosis. Altogether, exosomes carrying miR-320a from HUCMSCs might suppress lung cancer cell growth via the SOX4/Wnt/β-catenin axis, which highpoints the potency of exosomes expressing miR-320a as a possible therapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Huan Xie
- Department of Respiratory Medicine, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, P.R. China
| | - Jie Wang
- Department of Respiratory Medicine, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, P.R. China
| |
Collapse
|
12
|
Jia J, Sun J, Wang W, Yong H. Long Noncoding RNA MLK7-AS1 Promotes Non-Small-Cell Lung Cancer Migration and Invasion via the miR-375-3p/YWHAZ Axis. Front Oncol 2021; 11:626036. [PMID: 33968726 PMCID: PMC8100187 DOI: 10.3389/fonc.2021.626036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs act essential regulators in lung cancer tumorigenesis. Our research aimed to investigate the potential function and molecular mechanisms of MLK7-AS1 in NSCLC (non-small-cell lung cancer). QRT-PCR results indicated that the MLK7-AS1 expression level was upregulated in NSCLC cells and tissues. MLK7-AS1 strengthened cell migration and invasion in H1299 and A549 cells. Luciferase reporter assay found that MLK7-AS1 functioned as an endogenous sponge for miR-375-3p. Transwell assay results showed that miR-375-3p suppressed cell migration and invasion in H1299 and A549 cells. YWHAZ was confirmed as a target gene of miR-375-3p by Targetscan. YWHAZ overexpression promoted the invasion of H1299 and A549 cells. MLK7-AS1 upregulated YWHAZ expression and enhanced H1299 and A549 cell invasion by sponging miR-375-3p. MLK7-AS1 improved the metastasis ability of A549 in vivo. In conclusion, MLK7-AS1 was identified as a novel oncogenic RNA in NSCLC and can function as a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Jingzhou Jia
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jiwei Sun
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Wenbo Wang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, China
| |
Collapse
|
13
|
Han Y, Wang X, Mao E, Shen B, Huang L. lncRNA FLVCR1‑AS1 drives colorectal cancer progression via modulation of the miR‑381/RAP2A axis. Mol Med Rep 2021; 23:139. [PMID: 33313944 PMCID: PMC7751490 DOI: 10.3892/mmr.2020.11778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent types of cancer globally. Long non‑coding RNAs (lncRNAs) have been suggested to serve as vital regulators in CRC. lncRNA feline leukemia virus subgroup C receptor 1 antisense RNA 1 (FLVCR1‑AS1) is closely associated with the tumorigenesis of various types of cancer. The aim of the present study was to investigate the molecular mechanisms of lncRNA FLVCR1‑AS1 in CRC progression. The expression levels of FLVCR1‑AS1, microRNA (miR)‑381 and Ras‑related protein 2a (RAP2A) were measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A Kaplan‑Meier analysis was performed to determine the overall survival rate of patients with CRC. Furthermore, cell viability, migration and invasion were assessed using Cell Counting Kit‑8 (CCK‑8) and Transwell assays. The interaction between genes was confirmed using dual‑luciferase reporter and pull‑down assays. The results demonstrated that FLVCR1‑AS1 was upregulated in CRC tissues and cells, and increased FLVCR1‑AS1 expression levels in patients with CRC were associated with poor prognosis. FLVCR1‑AS1 knockdown significantly attenuated the viability, migration and invasion ability of CRC cells. In addition, the results confirmed that FLVCR1‑AS1 directly binds with miR‑381‑3p, and that RAP2A is a direct target of miR‑381‑3p. The overexpression of FLVCR1‑AS1 increased RAP2A expression levels. Functional assays revealed that miR‑381 inhibitor or RAP2A overexpression attenuated the suppressive effects of FLVCR1‑AS1 silencing on CRC cell viability, migration and invasion. Overall, the findings of the current study suggest that FLVCR1‑AS1 promotes CRC progression via the miR‑381/RAP2A pathway. These findings may provide a novel approach for CRC treatment.
Collapse
Affiliation(s)
- Yi Han
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Xiaoyan Wang
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Boyong Shen
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Liang Huang
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| |
Collapse
|
14
|
Lin S, Zhen Y, Guan Y, Yi H. Roles of Wnt/β-Catenin Signaling Pathway Regulatory Long Non-Coding RNAs in the Pathogenesis of Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:4181-4191. [PMID: 32581590 PMCID: PMC7280066 DOI: 10.2147/cmar.s241519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer. Long non-coding RNAs (lncRNAs) are promising novel diagnostic and prognostic biomarkers, as well as potential therapeutic targets for lung cancer. Long non-coding RNAs (lncRNAs) have been demonstrated to modulate tumor cells proliferation, cell cycle progression, invasion, and metastasis by regulating gene expression at transcriptional, post-transcriptional, and epigenetic levels. The oncogenic aberrant Wnt/β-catenin signaling is prominent in lung cancer, playing a vital role in tumorigenesis, prognosis, and resistance to therapy. Interestingly, compelling studies have demonstrated that lncRNAs exert either oncogenic or tumor suppressor roles by regulating Wnt/β-catenin signaling. In this review, we aim to present the current accumulated knowledge regarding the roles of Wnt/β-catenin signaling-regulated lncRNAs in the pathogenesis of non-small cell lung cancer (NSCLC). Better understanding of the effects of lncRNAs on Wnt/β-catenin signaling might contribute to the improved understanding of the molecular tumor pathogenesis and to the uncovering of novel therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Shan Lin
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China.,Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yinghui Guan
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
15
|
Gao W, Li H, Liu Y, Zhang Y, Zhao H, Liu F. Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p. Mol Med Rep 2020; 22:723-732. [PMID: 32626942 PMCID: PMC7339652 DOI: 10.3892/mmr.2020.11149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults that originates from glial cells. The prognosis of patients with high‑grade glioma is poor. It is therefore crucial to develop effective therapeutic strategies. Long non‑coding RNAs (lncRNAs) have been reported as potential inducers or suppressors of tumor progression. Previous studies have indicated that the lncRNA Feline Leukemia Virus Subgroup C Cellular Receptor 1 Antisense RNA 1 (FLVCR1‑AS1) is involved in the development and progression of gastric and lung cancer, as well as hepatocellular carcinoma and cholangiocarcinoma; however, the biological effect of FLVCR1‑AS1 in glioma is not completely understood. The aim of the present study was to investigate how FLVCR1‑AS1 modulates cell proliferation and invasion in glioma. FLVCR1‑AS1 expression was significantly upregulated in GBM tissues compared with adjacent normal brain samples, and was higher in GBM cell lines compared with normal human astrocyte cells. Furthermore, the microRNA (miR)‑30b‑3p was revealed to be a putative target of FLVCR1‑AS1, and the suppressive effects of miR‑30b‑3p on cellular proliferation and invasion were reversed following FLVCR1‑AS1‑knockdown. The results from Cell Counting Kit‑8 and Transwell assays confirmed that FLVCR1‑AS1‑knockdown inhibited GBM cell proliferation and invasion ability. In addition, FLVCR1‑AS1 was found to directly interact with miR‑30b‑3p, and a rescue experiment further established that FLVCR1‑AS1 contributed to glioma progression by inhibiting miR‑30b‑3p. The results from the present study demonstrated that FLVCR1‑AS1 may serve an oncogenic role in GBM and promote disease progression by interacting with miR‑30b‑3p. These findings suggested that FLVCR1‑AS1 may be considered as a novel therapeutic target and diagnostic biomarker for GBM.
Collapse
Affiliation(s)
- Weida Gao
- Gamma Knife Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongbin Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hong Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Fei Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
16
|
Long noncoding RNA FLVCR1-AS1 aggravates biological behaviors of glioma cells via targeting miR-4731-5p/E2F2 axis. Biochem Biophys Res Commun 2019; 521:716-720. [PMID: 31699367 DOI: 10.1016/j.bbrc.2019.10.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/12/2019] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.
Collapse
|
17
|
Yan H, Li H, Silva MA, Guan Y, Yang L, Zhu L, Zhang Z, Li G, Ren C. LncRNA FLVCR1-AS1 mediates miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:356. [PMID: 31412903 PMCID: PMC6694549 DOI: 10.1186/s13046-019-1356-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported to be associated with the proliferation of several cancer cells. The aim of this study was to investigate the role of FLVCR1-AS1 in ovarian serous cancer (OSC). Methods FLVCR1-AS1 expression was determined in human OSC tissues, serums and cell lines. The role of FLVCR1-AS1 knockdown or overexpression on OSC cell growth, migration, invasion, apoptosis and epithelial to mesenchymal transition (EMT) were evaluated in vitro using CCK8, colony formation assay, wound healing assay, transwell assay and western blot assay. Besides, luciferase reporter assays were performed to identify interactions among FLVCR1-AS1 and its target genes. Moreover, the in vivo effects were investigated using immunocompromised NSG female mice. Results In this study, FLVCR1-AS1 expression was upregulated in OSC tissues, serums, and cells. Knockdown FLVCR1-AS1 decreased cell growth, migration, invasion, and EMT, as well as increased apoptosis in OSC cells, whereas, overexpression of FLVCR1-AS1 increased cell proliferation, migration, invasion, and EMT, and decreased apoptosis of OSC cells. Besides, FLVCR1-AS1 directly bound to miR-513 and downregulated its expression. Moreover, FLVCR1-AS1 reversed the effect of miR-513 on the OSC cell growth, which might be associated with the role of YAP1. Furthermore, in terms of mechanism, FLVCR1-AS1 promoted EMT in OSC cells. Finally, mice models further confirmed that knockdown FLVCR1-AS1 distinctly suppressed cell growth and EMT in vivo. Conclusion Taken together, FLVCR1-AS1 mediated miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in OSC cells.
Collapse
Affiliation(s)
- Huan Yan
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Hong Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Maria A Silva
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Li Yang
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Linlin Zhu
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.,Department of Clinical Laboratory, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhan Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Genxia Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
18
|
Song Z, Wang H, Zhang S. Negative regulators of Wnt signaling in non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed Pharmacother 2019; 118:109336. [PMID: 31545260 DOI: 10.1016/j.biopha.2019.109336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
Significant advances in the treatment of non-small cell lung cancer (NSCLC) have been made over the past decade, and they predominantly involve molecular targets such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. However, despite the initial good response, drug resistance eventually develops. The Wnt signaling pathway has recently been considered important in embryonic development and tumorigenesis in many cancers, particularly NSCLC. Moreover, the aberrant Wnt pathway plays a significant role in NSCLC and is associated with cancer cell proliferation, metastasis, invasion and drug resistance, and the suppression of canonical or noncanonical Wnt signaling through various biological or pharmacological negative regulators has been proven to produce specific anticancer effects. Thus, blocking the Wnt pathway via its negative regulators may overcome the resistance of current treatment methods and lead to new treatment strategies for NSCLC. Therefore, in this review, we summarize recent studies on the role of negative regulators in Wnt signaling in NSCLC and the therapeutic potency of these molecules as agents and targets for NSCLC treatments.
Collapse
Affiliation(s)
- Zikuan Song
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|