1
|
Ketharnathan S, Pokharel S, Prykhozhij SV, Cordeiro-Santanach A, Ban K, Dogan S, Hoang HD, Liebman MF, Leung E, Alain T, Alecu I, Bennett SAL, Čuperlović-Culf M, Dror Y, Berman JN. Loss of Dnajc21 leads to cytopenia and altered nucleotide metabolism in zebrafish. Leukemia 2024; 38:2115-2126. [PMID: 39138265 PMCID: PMC11436362 DOI: 10.1038/s41375-024-02367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Mutations in the DNAJC21 gene were recently described in Shwachman-Diamond syndrome (SDS), a bone marrow failure syndrome with high predisposition for myeloid malignancies. To study the underlying biology in hematopoiesis regulation and disease, we generated the first in vivo model of Dnajc21 deficiency using the zebrafish. Zebrafish dnajc21 mutants phenocopy key SDS patient phenotypes such as cytopenia, reduced growth, and defective protein synthesis. We show that cytopenia results from impaired hematopoietic differentiation, accumulation of DNA damage, and reduced cell proliferation. The introduction of a biallelic tp53 mutation in the dnajc21 mutants leads to the development of myelodysplastic neoplasia-like features defined by abnormal erythroid morphology and expansion of hematopoietic progenitors. Using transcriptomic and metabolomic analyses, we uncover a novel role for Dnajc21 in nucleotide metabolism. Exogenous nucleoside supplementation restores neutrophil counts, revealing an association between nucleotide imbalance and neutrophil differentiation, suggesting a novel mechanism in dnajc21-mutant SDS biology.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Ban
- CHEO Research Institute, Ottawa, ON, Canada
| | | | - Huy-Dung Hoang
- CHEO Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mira F Liebman
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elaine Leung
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- CHEO Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miroslava Čuperlović-Culf
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Yigal Dror
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason N Berman
- CHEO Research Institute, Ottawa, ON, Canada.
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Songdech P, Butkinaree C, Yingchutrakul Y, Promdonkoy P, Runguphan W, Soontorngun N. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 2024; 24:foae006. [PMID: 38331422 PMCID: PMC10878408 DOI: 10.1093/femsyr/foae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.
Collapse
Affiliation(s)
- Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Peerada Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
3
|
Sera Y, Yamamoto S, Mutou A, Koba S, Kurokawa Y, Imanaka T, Yamaguchi M. SBDS Gene Mutation Increases ROS Production and Causes DNA Damage as Well as Oxidation of Mitochondrial Membranes in the Murine Myeloid Cell Line 32Dcl3. Biol Pharm Bull 2024; 47:1376-1382. [PMID: 39085077 DOI: 10.1248/bpb.b24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SDS has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. Neutropenia is the most common symptom in patients with SDS. SDS is also associated with an elevated risk of developing myelodysplastic syndromes and acute myeloid leukemia. The SBDS protein is involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. Considering the diverse function of SBDS, the effect of SBDS seems to be different in different cells and tissues. In this study, we established myeloid cell line 32Dcl3 with a common pathogenic SBDS variant on both alleles in intron 2, 258 + 2T > C, and examined the cellular damage that resulted. We found that the protein synthesis was markedly decreased in the mutant cells. Furthermore, reactive oxygen species (ROS) production was increased, and oxidation of the mitochondrial membrane lipids and DNA damage were induced. These findings provide new insights into the cellular and molecular pathology caused by SBDS deficiency in myeloid cells.
Collapse
Affiliation(s)
- Yukihiro Sera
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Sakura Yamamoto
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Akane Mutou
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuta Koba
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Yuki Kurokawa
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tsuneo Imanaka
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
4
|
Reddy T, Kotha R, M A. An Unusual Presentation of Extremely Early Neonatal Cirrhosis in Shwachman-Diamond Syndrome: A Case Report. Cureus 2023; 15:e38583. [PMID: 37288222 PMCID: PMC10241746 DOI: 10.7759/cureus.38583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Exocrine pancreatic insufficiency, haematological dysfunction, and skeletal abnormalities are the three clinical characteristics of the rare inherited bone marrow failure syndrome (IBMFS), known as Shwachman-Diamond syndrome (SDS). Cirrhosis at a neonatal age is uncommon and is typically not documented, as in neonatal presentation. Here, we present a case of SDS in which bi-cytopenia with macro-nodular cirrhosis emerged before the age of one month. Utilising genetic testing on the infant and both parents, we were able to confirm the diagnosis. We were expecting a higher-level liver transplant set-up, but the infant passed away in the interim. Genetic studies play a significant part in the diagnosis of difficult cases.
Collapse
Affiliation(s)
- Tejaswy Reddy
- Department of Neonatology, Niloufer Hospital, Hyderabad, IND
| | - Rakesh Kotha
- Department of Neonatology, Osmania Medical College, Hyderabad, IND
| | - Alimelu M
- Department of Neonatology, Niloufer Hospital, Hyderabad, IND
| |
Collapse
|
5
|
Yasuhara T, Nakai T, Fujiki Y. Purification and characterization of protease M, a yeast mitochondrial nucleotide-stimulated metal protease: Its identification as CYM1 gene product, a mitochondrial presequence peptidase. J Biochem 2022; 172:277-292. [PMID: 35997162 DOI: 10.1093/jb/mvac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
A chelator-sensitive protease in the mitochondrial matrix of the yeast, Saccharomyces cerevisiae (Biochem. Biophys. Res. Commun. 144, 277, 1987), was purified and characterized. The purified enzyme, termed protease M, specifically hydrolyzes peptide substrates on the N-side of the paired basic residues. When mastoparan was used as substrate, it cleaved Ala8-Leu9 and Lys11-Lys12 bonds as well as the N-side of Lys11-Lys12 residues. Nucleotide triphosphates stimulated the activity 3-fold at 2.5 mM. The genomic DNA sequence showed that Protease M was gene product of CYM1 known as mitochondrial presequence protease homologue in S. cerevisiae, encoding a 989-amino-acid long precursor protein. The N-terminal sequence of the purified enzyme indicated that protease M has 16-residue signal sequence and the "mature" protein consists of 973 amino acids with a molecular mass of 110 kDa. Protease M contained consensus sequence motifs of ATP-binding site very near the carboxyl terminus. The alignment of the two ATP-binding motifs is an inverted version of the common alignment. Gene-disruption of the enzyme generates mixed subunits in tetrameric MnSOD formed with 23-kDa mature and 24-kDa partial presequence-containing subunits. This report describes newly identified enzyme properties of the CYM1 gene product, protease M, and abnormal MnSOD complex formation of the disruption mutant.
Collapse
Affiliation(s)
- Toshimasa Yasuhara
- Innovation Division, Co-Creation Bureau, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Nakai
- Radioisotope Research Center, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka 812-8582, Japan; Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| |
Collapse
|
6
|
Songdech P, Intasit R, Yingchutrakul Y, Butkinaree C, Ratanakhanokchai K, Soontorngun N. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene. Microb Cell Fact 2022; 21:32. [PMID: 35248023 PMCID: PMC8897867 DOI: 10.1186/s12934-022-01757-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Xylitol is a valuable pentose sugar alcohol, used in the food and pharmaceutical industries. Biotechnological xylitol production is currently attractive due to possible conversion from abundant and low-cost industrial wastes or agricultural lignocellulosic biomass. In this study, the transcription factor Znf1 was characterised as being responsible for the activation of cryptic xylose metabolism in a poor xylose-assimilating S. cerevisiae for xylitol production.
Results
The results suggest that the expression of several xylose-utilising enzyme genes, encoding xylose reductases for the reduction of xylose to xylitol was derepressed by xylose. Their expression and those of a pentose phosphate shunt and related pathways required for xylose utilisation were strongly activated by the transcription factor Znf1. Using an engineered S. cerevisiae strain overexpressing ZNF1 in the absence of the xylose suppressor bud21Δ, xylitol production was maximally by approximately 1200% to 12.14 g/L of xylitol, corresponding to 0.23 g/g xylose consumed, during 10% (w/v) xylose fermentation. Proteomic analysis supported the role of Znf1 and Bud21 in modulating levels of proteins associated with carbon metabolism, xylose utilisation, ribosomal protein synthesis, and others. Increased tolerance to lignocellulosic inhibitors and improved cell dry weight were also observed in this engineered bud21∆ + pLJ529-ZNF1 strain. A similar xylitol yield was achieved using fungus-pretreated rice straw hydrolysate as an eco-friendly and low-cost substrate.
Conclusions
Thus, we identified the key modulators of pentose sugar metabolism, namely the transcription factor Znf1 and the suppressor Bud21, for enhanced xylose utilisation, providing a potential application of a generally recognised as safe yeast in supporting the sugar industry and the sustainable lignocellulose-based bioeconomy.
Graphical Abstract
Collapse
|
7
|
Jain A, Nilatawong P, Mamak N, Jensen LT, Jensen AN. Disruption in iron homeostasis and impaired activity of iron-sulfur cluster containing proteins in the yeast model of Shwachman-Diamond syndrome. Cell Biosci 2020; 10:105. [PMID: 32944219 PMCID: PMC7488397 DOI: 10.1186/s13578-020-00468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is a congenital disease that affects the bone marrow, skeletal system, and pancreas. The majority of patients with SDS have mutations in the SBDS gene, involved in ribosome biogenesis as well as other processes. A Saccharomyces cerevisiae model of SDS, lacking Sdo1p the yeast orthologue of SBDS, was utilized to better understand the molecular pathogenesis in the development of this disease. RESULTS Deletion of SDO1 resulted in a three-fold over-accumulation of intracellular iron. Phenotypes associated with impaired iron-sulfur (ISC) assembly, up-regulation of the high affinity iron uptake pathway, and reduced activities of ISC containing enzymes aconitase and succinate dehydrogenase, were observed in sdo1∆ yeast. In cells lacking Sdo1p, elevated levels of reactive oxygen species (ROS) and protein oxidation were reduced with iron chelation, using a cell impermeable iron chelator. In addition, the low activity of manganese superoxide dismutase (Sod2p) seen in sdo1∆ cells was improved with iron chelation, consistent with the presence of reactive iron from the ISC assembly pathway. In yeast lacking Sdo1p, the mitochondrial voltage-dependent anion channel (VDAC) Por1p is over-expressed and its deletion limits iron accumulation and increases activity of aconitase and succinate dehydrogenase. CONCLUSIONS We propose that oxidative stress from POR1 over-expression, resulting in impaired activity of ISC containing proteins and disruptions in iron homeostasis, may play a role in disease pathogenesis in SDS patients.
Collapse
Affiliation(s)
- Ayushi Jain
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Phubed Nilatawong
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190 Thailand
| | - Narinrat Mamak
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Pathology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
8
|
Chalermwat C, Thosapornvichai T, Wongkittichote P, Phillips JD, Cox JE, Jensen AN, Wattanasirichaigoon D, Jensen LT. Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Res 2020; 19:5621492. [PMID: 31711143 DOI: 10.1093/femsyr/foz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.
Collapse
Affiliation(s)
- Chalongchai Chalermwat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand.,Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - John D Phillips
- Department of Internal Medicine, Division of Hematology, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA.,Department of Biochemistry, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| |
Collapse
|
9
|
Songdech P, Ruchala J, Semkiv MV, Jensen LT, Sibirny A, Ratanakhanokchai K, Soontorngun N. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae. Biotechnol J 2020; 15:e1900492. [PMID: 32196937 DOI: 10.1002/biot.201900492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/01/2020] [Indexed: 12/28/2022]
Abstract
Saccharomyces cerevisiae offers an attractive platform for synthesis of biofuels and biochemical; however, robust strains that can withstand high substrate concentration and fermentation conditions are required. To improve the yield and productivity of bioethanol, modification of glucose metabolism and cellular stress adaptation is investigated. Specifically, the role of Znf1 transcription factor in metabolic regulation of glucose is characterized. Here, Znf1 is first shown to activate key genes in glycolysis, pyruvate metabolism, and alcoholic fermentation when glucose is provided as the sole carbon source. Under conditions of high glucose (20 g L-1 ), overexpression of ZNF1 accelerated glucose consumption with only 0.67-0.80% of glucose remaining after 24 or 36 h of fermentation. Importantly, ZNF1 overexpression increases ethanol concentrations by 14-24% and achieves a maximum ethanol concentration of 76.12-88.60 g L-1 . Ethanol productivity is increased 3.17-3.69 in strains overexpressing ZNF1 compared to 2.42-3.35 and 2.94-3.50 for the znf1Δ and wild-type strains, respectively. Moreover, strains overexpressing ZNF1 also display enhanced tolerance to osmotic and weak-acid stresses, important trait in alcoholic fermentation. Overexpresssion of key transcriptional activators of genes in glycolysis and stress responses appears to be an effective strategy to improve bioethanol productivity and enhance strain robustness.
Collapse
Affiliation(s)
- Pattanan Songdech
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, 35-601, Poland
| | - Marta V Semkiv
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, 79005, Ukraine
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Andriy Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, 79005, Ukraine
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|