1
|
Zhou W, Deng X, Wang B, Yuan Y, Ma J, Meng X. HTF4 modulates the transcription of GID2 to promote the malignant biological behavior of pancreatic cancer. Pancreatology 2024; 24:1073-1083. [PMID: 39216997 DOI: 10.1016/j.pan.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Helix-loop-helix transcription factor 4 (HTF4) as an anti-cancer target has been reported in many human cancers, but limited data exists regarding the effect of HTF4 in pancreatic cancer. In this study, we aimed to investigate the role of HTF4 in pancreatic cancer. METHODS The expression levels of HTF4 in clinical pancreatic cancer samples were measured. HTF4 was knocked down or overexpressed in pancreatic cancer cells and was subsequently tested for bio-function using in vitro assays and in vivo. The regulation of HTF4 on GID2 was assessed via bioinformatic tools and dual-luciferase reporter assay. RESULTS We found that HTF4 was highly expressed in pancreatic cancer tissues and correlated with poor patient prognosis. In addition, knocking down HTF4 expression inhibited cell proliferation, migration, and invasion, whereas HTF4 overexpression exerted the opposite effect. Moreover, HTF4 promoted tumor growth and metastasis in pancreatic cancer. Further, HTF4 bound to the GID2 promoter region and promoted transcriptional activation of GID2 in pancreatic cancer cells. GID2 knockdown suppressed HTF4-induced malignant behaviors of pancreatic cancer cells. CONCLUSIONS Our findings suggest that the HTF4/GID2 axis accelerates the progression of pancreatic cancer, providing a potential therapeutic target and prognostic indicator for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifeng Yuan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Wang F, Zhao F, Deng Y, Tan A, Lai Y, Gong H, Huang Z, Liu Y, Liang Q, Wang W. miR-2765 involved in ammonia nitrogen stress via negative regulation of autophagy in shrimp. Int J Biol Macromol 2024; 258:129084. [PMID: 38161029 DOI: 10.1016/j.ijbiomac.2023.129084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
MicroRNA (miRNA) is a highly conserved non-coding tiny endogenous RNA molecule that regulates various cellular functions by inhibiting mRNA translation or promoting the degradation of proteins. In this study, we identified a specific miRNA (designed as Pva-miR-2765) from Penaeus vannamei, which widely distributed in different tissues of shrimp, with the highest concentration found in the intestine. Through fluorescence in situ hybridization (FISH), we observed that Pva-miR-2765 is primarily located in the cytoplasm. Interestingly, we found that the expression of Pva-miR-2765 significantly decreased in hemocytes, hepatopancreas and gill under ammonia nitrogen stress. Furthermore, when Pva-miR-2765 was silenced, the autophagy level in shrimp significantly increased. Additionally, Pva-miR-2765 was found to promote pathological damage in the hepatopancreas of shrimp. Subsequently, correlation analysis revealed a negative relationship between the expression of Pva-miR-2765 and PvTBC1D7. To confirm this interaction, we conducted a dual luciferase reporter gene assay, which demonstrated that Pva-miR-2765 inhibit the expression of PvTBC1D7 by interacting with its 3'UTR. And the expression level of PvTBC1D7 in shrimp decreased significantly under ammonia nitrogen stress in Pva-miR-2765 overexpressed. Our findings suggest that Pva-miR-2765 can reduce autophagy in P. vannamei by inhibiting the regulation of PvTBC1D7, thereby participating in the oxidative stress of shrimp caused by ammonia nitrogen stress.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China; Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Wang L, Tang Y, Wu H, Shan G. TCF12 activates MAGT1 expression to regulate the malignant progression of pancreatic carcinoma cells. Oncol Lett 2021; 23:62. [PMID: 35069871 PMCID: PMC8756560 DOI: 10.3892/ol.2021.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
As a highly malignant gastrointestinal tumor, pancreatic carcinoma (PC) has poor prognosis due to its low early diagnosis rate, advanced tumor resection and chemotherapy resistance. Magnesium transporter 1 (MAGT1) is a magnesium ion transporter located on the cell membrane, which shows promotive effects on biological behaviors of multiple tumor cells. The aim of the present study was to investigate the role of MAGT1 in the progression of PC and its potential molecular mechanism. Based on the Gene Expression Profiling Interactive Analysis website, MAGT1 was highly expressed in tissues from patients with PC and was associated with poor prognosis. In functional experiments, MAGT1 was highly expressed in PC cell lines. The Cell Counting Kit-8, gap closure and Transwell assays, and western blot analysis, were used to investigate the effects of MAGT1 overexpression or knockdown on the biological behaviors of PC cells. It was found that MAGT1 promoted the proliferation, migration and invasion of PC cells in vitro. According to the Encyclopedia of RNA Interactomes website, transcription factor 12 (TCF12) mRNA expression level was positively correlated with MAGT1 expression level in the tissues from patients with PC. Positive targeting regulation of MAGT1 by TCF12 was also confirmed using a dual-luciferase gene reporter assay and chromatin immunoprecipitation. In addition, knockdown of TCF12 expression inhibited the proliferation and migration of PC cells, but overexpression of MAGT1 expression partly reversed this. These results suggested that TCF12 could promote the proliferation, migration and invasion of PC cells by activating MAGT1 expression, which was associated with poor prognosis. These findings suggest that MAGT1 could be a promising biomarker for the occurrence, progression and prognosis of PC.
Collapse
Affiliation(s)
- Ling Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yanjiao Tang
- Medical Laboratory, Shenzhen Sami Medical Center, Shenzhen, Guangdong 518038, P.R. China
| | - Hongyi Wu
- Medical Laboratory, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516008, P.R. China
| | - Guiqiu Shan
- Department of Transfusion Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
4
|
Tai G, Fu H, Bai H, Liu H, Li L, Song T. Long non-coding RNA GLIDR accelerates the tumorigenesis of lung adenocarcinoma by miR-1270/TCF12 axis. Cell Cycle 2021; 20:1653-1662. [PMID: 34369267 DOI: 10.1080/15384101.2021.1953754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a deadly cancer with a high incidence worldwide. Long noncoding RNAs (lncRNAs) have been confirmed to have the regulatory effects on the occurrence and development of LUAD. But the specific functions of lncRNA GLIDR in LUAD are still not explicit and need to be investigated. On the basis of the outcomes of RT-qPCR experiments, the relative expression of GLIDR was evidently up-regulated in LUAD cells, while that of miR-1270 was down-regulated. The down-regulation of GLIDR inhibits cell proliferation in accordance with the results of CCK-8, EdU and colony formation assays, and accelerates cell apoptosis according to the results of flow cytometry and JC-1 analyses. Luciferase reporter, RNA pull down and RIP assays indicated that GLIDR could sponge miR-1270 in LUAD. Additionally, TCF12 was proved as the target gene of miR-1270. Furthermore, rescue experiments indicated that overexpression of TCF12 could offset the inhibitory functions of silencing GLIDR on cell behaviors. In brief, this study has demonstrated that GLIDR/miR-1270/TCF12 axis plays the crucial role in LUAD, which offers a new insight into researches on molecular mechanism concerning LUAD and provides with a new perspective for LUAD treatment.
Collapse
Affiliation(s)
- Guigang Tai
- Department of Emergency, Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Hongyi Fu
- Medical Department, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Hongzhong Bai
- Medical Department, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Hui Liu
- Medical Department, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Lijuan Li
- Cadres Office, Joint Logistic Support Force 980th Hospital of PLA, Shijiazhuang, Hebei, China
| | - Tao Song
- Medical Department, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
An L, Li X, Yang J. MicroRNA-211 attenuates cell proliferation in T-cell lymphoblastic lymphoma through targeting TCF12. Leuk Res 2021; 110:106653. [PMID: 34298254 DOI: 10.1016/j.leukres.2021.106653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a class of highly aggressive hematologic neoplasms originating from progenitor T-lymphocytes. MicroRNA (miRNA) is an endogenous RNA molecule with 22 nucleotides in length. Accumulated evidence suggests that miRNA functions as a key regulator in human cancer. Herein, by in silico analysis, we found that miR-211 was a decreased miRNA in T-LBL in high-throughput sequencing data, which was subsequently verified in our cohort. Low miR-211 was closely correlated with bulky disease, high ann arbor stage, relapse and poor prognosis. miR-211 was regulated by N6-methyladenosine (m6A) modification, specifically, m6A methyltransferase METTL14 methylated primary miR-211 (pri-miR-211), expediting pri-miR-211 processing via recruiting DGCR8. Functionally, miR-211 overexpression significantly reduced T-LBL cell viability, DNA synthesis rate and spheroid formation ability, whereas silencing of miR-211 had the opposite effects. In addition, we established the xenograft tumor model and found that miR-211 remarkably inhibited tumor growth in vivo. Further, TCF12 was the direct target of miR-211, miR-211 bound to TCF12 mRNA 3`-untranslated region (UTR) and increased its decay, overexpression of TCF12 could effectively rescue the weakened malignant behavior of T-LBL cells caused by miR-211 overexpression. Collectively, our data clearly demonstrate that miR-211 is a novel tumor suppressor in T-LBL, targeting of miR-211/TCF12 axis may be a potential treatment for T-LBL patients.
Collapse
Affiliation(s)
- Licai An
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai City, Shandong Province, 264001, China
| | - Xijing Li
- Department of Pathology, Yantaishan Hospital, Yantai City, Shandong Province, 264003, China
| | - Jing Yang
- Department of Hematology, Shandong Zaozhuang Municipal Hospital, Zaozhuang City, Shandong Province, 277100, China.
| |
Collapse
|
6
|
Gu J, Ge X, You A, Li J, Zhang Y, Rao G, Wang J, Zhang K, Liu X, Wu X, Cheng L, Zhu M, Wang D. miR-218-5p inhibits the malignant progression of glioma via targeting TCF12. TUMORI JOURNAL 2021; 108:338-346. [PMID: 34121515 DOI: 10.1177/03008916211018263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have shown the ability of transcription factor 12 (TCF12) to promote tumor malignant progression, but its function in glioma cells has not been fully elucidated. In this study, we analyzed the data from TCGA by bioinformatics and found that in glioma tissue, TCF12 was conspicuously highly expressed while miR-218-5p was significantly low-expressed. The downregulation of miR-218-5p was correlated with adverse prognosis in patients with glioma. miR-218-5p was found to be negatively associated with TCF12 by Pearson correlation analysis, and dual luciferase assay was employed to verify that miR-218-5p and TCF12 had a targeting relationship. qRT-PCR and Western blot assays were used to verify that the expression of TCF12 was regulated by its upstream regulator miR-218-5p. Moreover, cell experiments validated that overexpressed TCF12 could promote the proliferation, migration, and invasion of glioma cells and inhibit their apoptosis, whereas overexpressing miR-218-5p at the same time could reverse this phenomenon. Our study demonstrates the regulatory mechanism of the miR-218-5p/TCF12 axis in gliomas, which lays a foundation for searching for new therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jingshun Gu
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xuehua Ge
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Aiwu You
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jun Li
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yuyan Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Guomin Rao
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Juntong Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Kun Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xuan Liu
- The Second Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Mengjiao Zhu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Dongchun Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
7
|
Gao M, Li X, Yang Z, Zhao S, Ling X, Li J, Xing K, Qi X, Wang X, Xiao L, Ni H, Guo Y, Sheng X. circHIPK3 regulates proliferation and differentiation of myoblast through the miR-7/TCF12 pathway. J Cell Physiol 2021; 236:6793-6805. [PMID: 33748999 DOI: 10.1002/jcp.30363] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle development is a complex biological process involving multiple key genes, signaling pathways and noncoding RNAs, including microRNAs and circular RNAs (circRNAs). However, the regulatory relationship among them is so complicated that it has not yet been fully elucidated. In this study, we found that miR-7 inhibited C2C12 cell proliferation and differentiation by targeting transcription factor 12 (TCF12). circHIPK3 acted as a competing endogenous RNA, and its overexpression effectively reversed the regulation of miR-7 on C2C12 cell proliferation and differentiation by increasing TCF12 expression. Taken together, our findings provide evidence that circHIPK3 regulates skeletal muscle development through the miR-7/TCF12 pathway. This study provides a scientific basis for further research on skeletal muscle development at the circRNA level.
Collapse
Affiliation(s)
- Mengjin Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xue Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zuojun Yang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shuo Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xingxing Ling
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingjing Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Song L, Guo X, Zhao F, Wang W, Zhao Z, Jin L, Wu C, Yao J, Ma Z. TTC36 inactivation induce malignant properties via Wnt-β-catenin pathway in gastric carcinoma. J Cancer 2021; 12:2598-2609. [PMID: 33854620 PMCID: PMC8040709 DOI: 10.7150/jca.47292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Objective: Tetratricopeptide repeat (TRP)-mediated cofactor proteins are involved in a wide range of cancers. TTC36 is little studied member of TRP subfamily. This study aimed to investigate the role of TTC36 in human gastric carcinoma (GC) and explore the potential underlying mechanisms. Methods: The analysis of TTC36 differential expression in GC was conducted using data from TCGA and a human tissue microarray. And effects of TTC36 expression on the prognosis of patients with gastric carcinoma were analyzed using the data from the GEO database. Lentivirus was transfected into the cell lines of AGS and BGC823 to construct overexpression and knocked down TTC36 cell model respectively. The effect of TTC36 expression on the growth, apoptosis and cell cycle of cells was explored in vitro. Downstream molecules were detected by western blotting. GSEA predicted signal pathway and related proteins were then detected. Results: TTC36 expression in human GC tissues was found significantly lower than that in adjacent normal tissues and closely related to clinical prognosis. The overexpression of TTC36 notably inhibited tumor progression, cell cycle G1/S transfer and increased apoptosis in AGS cells. Conversely, the opposite effects were observed when TTC36 was suppressed in BGC823 cells. The expression of cleaved caspase3, Survivin, cyclin D1 and c-Myc were consistent with the phenotype in TTC36 operated GC cell lines. Intriguingly, GSEA analysis predicted Wnt-β-catenin pathway involved in TTC36 induced effects in GC cells, expression of β-catenin and downstream molecules such as TCF4, c-jun and pAKT were found negative related to TTC36 expression in GC cells. Notably, treatment with the Wnt/β-catenin inhibitor XAV939 dramatically attenuated the effects of TTC36 in GC cells. Conclusion: These results signify a critical role for TTC36 as a tumor suppressor in gastric carcinoma via regulating Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China.,Department of Medicine, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Xiaonong Guo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China.,Department of Medicine, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Wei Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhifang Zhao
- Department of Medicine, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Long Jin
- Department of Medicine, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Chengli Wu
- Department of Medicine, Northwest Minzu University, Lanzhou 730030, Gansu, China
| | - Jibin Yao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China
| |
Collapse
|
9
|
Meng QH, Li Y, Kong C, Gao XM, Jiang XJ. Circ_0000388 Exerts Oncogenic Function in Cervical Cancer Cells by Regulating miR-337-3p/TCF12 Axis. Cancer Biother Radiopharm 2021; 36:58-69. [PMID: 32119786 DOI: 10.1089/cbr.2019.3159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Qing-hua Meng
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi, China
| | - Ying Li
- Department of Gynaecology and Obstetrics, The Third People's Hospital of Linyi, Linyi, China
| | - Cui Kong
- Department of Gynaecology and Obstetrics, The Third People's Hospital of Linyi, Linyi, China
| | - Xue-mei Gao
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi, China
| | - Xiao-juan Jiang
- Department of Gynaecology and Obstetrics, Jinan Maternal and Child Health Hospital of Shandong Province, Jinan, China
| |
Collapse
|
10
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
11
|
Zheng K, Xie H, Wu W, Wen X, Zeng Z, Shi Y. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int 2021; 21:27. [PMID: 33413401 PMCID: PMC7789671 DOI: 10.1186/s12935-020-01699-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Increasing studies have revealed that circular RNAs (CircRNAs) make great contributions to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A, in glioma. METHODS Firstly, reverse transcription-polymerase chain reaction (RT-PCR) was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical-pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and CircPIP5K1A overexpression and knockdown cell models were constructed. Subsequently, cell proliferation and viability were detected by the CCK8 method and BrdU staining. Cell apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (Caspase3, Bax, and Bcl2) and epithelial-mesenchymal transition (EMT) markers (E-cadherin, Vimentin, and N-cadherin) was determined by western blot or RT-PCR. RESULTS The results manifested that CircPIP5K1A was upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated glioma cell proliferation, invasion, and EMT and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A upregulated TCF12 and PI3K/AKT activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. CONCLUSIONS Overall, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates glioma evolvement by modulating the miR-515-5p-mediated TCF12/PI3K/AKT axis.
Collapse
Affiliation(s)
- Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Haipeng Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Wensong Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Yanfang Shi
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China.
| |
Collapse
|
12
|
Zhu G, Yang S, Wang R, Lei J, Ji P, Wang J, Tao K, Yang C, Ge S, Wang L. P53/miR-154 Pathway Regulates the Epithelial-Mesenchymal Transition in Glioblastoma Multiforme Cells by Targeting TCF12. Neuropsychiatr Dis Treat 2021; 17:681-693. [PMID: 33664574 PMCID: PMC7924251 DOI: 10.2147/ndt.s273578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is an aggressive brain tumor with a rather short survival time. Mutation of p53 has been observed and reported to play critical roles in the progression of GBM. However, the pathological mechanisms are still unclear. This study was designed to identify the role of miR-154 in mediating the biological functions of p53 in glioblastoma multiforme. METHODS In the current study, the expression of miR-154 in GBM tissue samples and cell lines with wt-p53 or mutant p53 was evaluated. The functions of miR-154 in tumor migration, invasion and epithelial-mesenchymal transition were analyzed in vitro. A luciferase reporter assay was used to identify the target of miR-154. RESULTS We found that expression of miR-154 was much lower in patient tissues with mutant p53. Further study revealed that p53 was a transcription factor of miR-154 and that the R273H mutation led to its inactivation. In addition, overexpression of miR-154 remarkably suppressed cell migration, invasion and EMT in vitro and tumor growth in vivo. Moreover, TCF12 was proven to be a direct target of miR-154, and the tumor suppressive effect of miR-154 was reversed by TCF12. CONCLUSION Overall, miR-154, which was regulated by wt-p53, inhibited migration, invasion and EMT of GBM cells by targeting TCF12, indicating that miR-154 may act as a biomarker and that the p53/miR-154/TCF12 pathway could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shirong Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jie Lei
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, People's Republic of China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Zhang C, Chang J, Tian X, Zhu C, Xu W. LncRNA EMX2OS, Regulated by TCF12, Interacts with FUS to Regulate the Proliferation, Migration and Invasion of Prostate Cancer Cells Through the cGMP-PKG Signaling Pathway. Onco Targets Ther 2020; 13:7045-7056. [PMID: 32801740 PMCID: PMC7398891 DOI: 10.2147/ott.s243552] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background LncRNA EMX2OS (EMX2 opposite strand/antisense RNA) is notably downregulated in prostate cancer (PCa) tissues and may be regarded as a potential molecular biomarker for diagnosis and prognosis. However, its exact role in regulating the development of PCa is obscure. Methods The EMX2OS expression was assessed in PCa tissues, paracancer tissues, PCa cells and normal prostate epithelial cells by qPCR. Gain- and loss-of-function experiments were performed to investigate the role of EMX2OS and FUS in cGMP-PKG (cyclic guanosine monophosphate-dependent protein kinase)-mediated proliferation, invasion, and migration in human PCa cell lines DU145 and PC3. Then, the interaction of transcription factor 12 (TCF12) with EMX2OS promoter was confirmed by using the dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RNA binding protein immunoprecipitation and RNA pull-down assays were used to verify the interaction between EMX2OS and FUS protein. Finally, the role of EMX2OS and FUS in tumor growth in vivo was validated in a xenograft nude mouse model. Results TCF12 and EMX2OS were both downregulated in PCa tissues and cells, and they negatively regulated cell proliferation, migration and invasion, and activated cGMP-PKG pathway in DU145 and PC3 cells. TCF12 was a transcription factor of EMX2OS. TCF12 and EMX2OS overexpression both down-regulated cell proliferation, migration and invasion, and activated cGMP-PKG pathway in DU145 and PC3 cells. Furthermore, EMX2OS directly bound with FUS protein and had a synergy effect with FUS protein on cGMP-PKG-mediated cell functions, which could be suppressed by (D)-DT-2 (a cGMP-PKG inhibitor). In addition, the overexpression of FUS or EMX2OS individually markedly decreased the volume and weight of tumors in vivo, and co-overexpression of them further inhibited tumor growth. Conclusion EMX2OS, transcriptionally regulated by TCF12, played a synergy role with FUS protein in regulating the proliferation, migration and invasion of PCa cells by activating the cGMP-PKG pathway.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Chaowei Zhang
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Junkai Chang
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Xin Tian
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Chaoyang Zhu
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Weibo Xu
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| |
Collapse
|
14
|
Cao D, Di M, Liang J, Shi S, Tan Q, Wang Z. MicroRNA-183 in Cancer Progression. J Cancer 2020; 11:1315-1324. [PMID: 32047538 PMCID: PMC6995398 DOI: 10.7150/jca.39044] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-183(miR-183) is abnormally expressed in many kinds of tumors. It participates in the initiation and development of tumors. There are many pathways regulate the expression of miR-183. The action mechanism of miR-183 in cancer is very extensive, and contradictory conclusions are often drawn. It was upregulated in 18 kinds of cancer, downregulated in 6 kinds of cancer. In addition, there are seven types of cancer, both upregulated and downregulated reports can be found. Evidence showed that miR-183 can not only directly play the role of oncogene or antioncogene, but also regulate the expression of other oncogene or antioncogene in different cancer types. In this review, we discuss the regulator of miR-183 and summarized the expression of miR-183 in different cancers. We also counted the target genes of miR-183 and the functional roles they play. Furthermore, we focused on the roles of miR-183 in cell migration, cell invasion, epithelial-mesenchymal transition (EMT) and microangiogenesis, which play the most important roles in cancer processes. It sheds light on the likely reasons why miR-183 plays different roles in various cancers. In addition, miR-183 and its downstream effectors have the potential to be promising prognostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Dingren Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Min Di
- Sir Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, 310058, P. R. China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
15
|
Zhang Y, Yu R, Li Q, Li Y, Xuan T, Cao S, Zheng J. SNHG1/miR‐556‐5p/TCF12 feedback loop enhances the tumorigenesis of meningioma through Wnt signaling pathway. J Cell Biochem 2019; 121:1880-1889. [PMID: 31692066 DOI: 10.1002/jcb.29423] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yubing Zhang
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Runze Yu
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Qingsong Li
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Yong Li
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Tao Xuan
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Shen Cao
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| | - Jun Zheng
- Department of Orthopedic Anhui Provincial People's Hospital Hefei Anhui China
| |
Collapse
|