1
|
Yang L, Fan J, Dong C, Wang X, Ma B. Correlative expression of exosomal miRNAs in chemotherapy resistance of triple-negative breast cancer: An observational study. Medicine (Baltimore) 2024; 103:e38549. [PMID: 39213248 PMCID: PMC11365668 DOI: 10.1097/md.0000000000038549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in tumors is the primary contributor to clinical treatment failures, and aberrant expression of small RNA molecules, specifically microRNAs (miRNAs), in tumor tissues is intricately associated with drug resistance. The aim of this study is to investigate the targets and mechanisms through which exosomal miRNAs from triple-negative breast cancer (TNBC) regulate chemotherapy resistance in tumor cells. Utilizing high-throughput sequencing technology, we conducted exosomal miRNA sequencing on serum samples obtained from TNBC patients who were either sensitive or resistant to AC-sequential T chemotherapy. Subsequently, we identified and screened differentially expressed miRNAs. The observed differences in miRNA expression were further validated through quantitative reverse transcription-polymerase chain reaction. In comparison to TNBC patients who exhibited sensitivity to the AC-sequential T regimen chemotherapy, we identified significant differences in the expression of 85 miRNAs within serum exosomes of patients displaying chemotherapy resistance. Furthermore, we observed a substantial difference in the expression of hsa-miR-6831-5p between TNBC patients who were responsive to chemotherapy and those who were drug-resistant and underwent treatment with the AC-sequential T regimen. hsa-miR-6831-5p holds the potential to serve as a diagnostic marker for assessing the chemosensitivity of the AC-sequential T regimen in TNBC.
Collapse
Affiliation(s)
- Le Yang
- Department of Breast and Thyroid Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Jingjing Fan
- Department of Breast and Thyroid Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| | - Xiaoli Wang
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Almohaywi M, Sugita BM, Centa A, Fonseca AS, Antunes VC, Fadda P, Mannion CM, Abijo T, Goldberg SL, Campbell MC, Copeland RL, Kanaan Y, Cavalli LR. Deregulated miRNA Expression in Triple-Negative Breast Cancer of Ancestral Genomic-Characterized Latina Patients. Int J Mol Sci 2023; 24:13046. [PMID: 37685851 PMCID: PMC10487916 DOI: 10.3390/ijms241713046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maram Almohaywi
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Valquiria C. Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ciaran M. Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ 07701, USA
| | - Tomilowo Abijo
- National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Stuart L. Goldberg
- John Theurer Cancer Center, Hackensack Meridian School of Medicine, Hackensack, NJ 07701, USA
- COTA, Inc., New York, NY 10014, USA
| | - Michael C. Campbell
- Department of Biological Sciences Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert L. Copeland
- Pharmacology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Yasmine Kanaan
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
4
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ruiz-Manriquez LM, Villarreal-Garza C, Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Estrada-Meza C, Arvizu-Espinosa MG, Paul S, Cuevas-Diaz Duran R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int J Mol Sci 2023; 24:9984. [PMID: 37373139 PMCID: PMC10297903 DOI: 10.3390/ijms24129984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths among women worldwide. Neoadjuvant therapy (NAT) is increasingly being used to reduce tumor burden prior to surgical resection. However, current techniques for assessing tumor response have significant limitations. Additionally, drug resistance is commonly observed, raising a need to identify biomarkers that can predict treatment sensitivity and survival outcomes. Circulating microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have been shown to play a significant role in cancer progression as tumor inducers or suppressors. The expression of circulating miRNAs has been found to be significantly altered in breast cancer patients. Moreover, recent studies have suggested that circulating miRNAs can serve as non-invasive biomarkers for predicting response to NAT. Therefore, this review provides a brief overview of recent studies that have demonstrated the potential of circulating miRNAs as biomarkers for predicting the clinical response to NAT in BC patients. The findings of this review will strengthen future research on developing miRNA-based biomarkers and their translation into medical practice, which could significantly improve the clinical management of BC patients undergoing NAT.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64700, Mexico;
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 64700, Mexico;
| | | | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - José Isidoro-Sánchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | |
Collapse
|
6
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
7
|
Bardeck N, Paluschinski M, Castoldi M, Kordes C, Görg B, Stindt J, Luedde T, Dahl SV, Häussinger D, Schöler D. Swelling-induced upregulation of miR-141-3p inhibits hepatocyte proliferation. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100440. [PMID: 35287291 PMCID: PMC8917307 DOI: 10.1016/j.jhepr.2022.100440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Background & Aims Methods Results Conclusions Lay summary Gene expression changes in hypoosmotic perfused rat liver. Hypoosmolarity upregulates miR-141-3p in rat perfused liver and primary hepatocytes. Src-/Erk-/p38-MAPK-inhibition prevents miR-141-3p upregulation by hypoosmolarity. PHx and hepatocyte stretch transiently upregulate miR-141-3p, which downregulates Cdk8 mRNA. Overexpression of miR-141-3p inhibits Huh7 cell proliferation.
Collapse
Affiliation(s)
- Nils Bardeck
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Martha Paluschinski
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Stephan vom Dahl
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - David Schöler
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Düsseldorf, Germany
- Corresponding author. Address: Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany. Tel.: +49-(0)211-81-16330; Fax: +49-(0)211-81-18752..
| |
Collapse
|
8
|
Dou P, Tan G, Fan Z, Xiao J, Shi C, Lin Z, Duan J. MicroRNA-9 facilitates hypoxia-induced injury and apoptosis in H9c2 cells via targeting CDK8. J Biosci 2021. [DOI: 10.1007/s12038-020-00126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Mondal P, Meeran SM. microRNAs in cancer chemoresistance: The sword and the shield. Noncoding RNA Res 2021; 6:200-210. [PMID: 34977437 PMCID: PMC8669341 DOI: 10.1016/j.ncrna.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial disease and one of the leading causes of mortality worldwide. Cancer cells develop multiple strategies to reduce drug sensitivity and eventually lead to chemoresistance. Chemoresistance is initiated either by intrinsic factors or due to the prolonged use of chemotherapeutics as acquired resistance. Further, chemoresistance is also one of the major reasons behind tumor recurrence and metastasis. Therefore, overcoming chemoresistance is one of the primary challenges in cancer therapy. Several mechanisms are involved in chemoresistance. Among them, the key role of ABC transporters and tumor microenvironment have been well studied. Recently, microRNAs (miRNAs) regulation in tumor development, metastasis, and chemotherapy has got wider interest due to its role in regulating genes involved in cancer progression and therapy. Noncoding RNAs, including miRNAs, have been associated with the regulation of tumor-suppressor and tumor-promoter genes. Further, miRNA can also be used as a reliable diagnostic and prognostic marker to predict the stage and types of cancer. Recent evidences have revealed that miRNAs regulation also influences the function of drug transporters and the tumor microenvironment, which affects chemosensitivity to cancer cells. Therefore, miRNAs can be a promising target to reverse back chemosensitivity in cancer cells. This review comprehensively discusses the mechanisms involved in cancer chemoresistance and its regulation by miRNAs.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
11
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
12
|
Liu G, Zhang Z, Song Q, Guo Y, Bao P, Shui H. Circ_0006528 Contributes to Paclitaxel Resistance of Breast Cancer Cells by Regulating miR-1299/CDK8 Axis. Onco Targets Ther 2020; 13:9497-9511. [PMID: 33061434 PMCID: PMC7522311 DOI: 10.2147/ott.s252886] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be involved in regulating the development of breast cancer. Paclitaxel (PTX) can be used for the chemotherapy of breast cancer. The study aimed to explore the role and mechanism of circ_0006528 in PTX-resistant breast cancer progression. Methods The levels of circ_0006528, microRNA-1299 (miR-1299) and cyclin-dependent kinase 8 (CDK8) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RNase R treatment was used to confirm that the circ_0006528 was a circular RNA. PTX resistance and cell proliferation were determined by Cell counting kit-8 (CCK-8) assay. Cell apoptosis, migration and invasion were analyzed by flow cytometry and Transwell assays, respectively. The levels of all proteins were examined by Western blot. The interaction between circ_0006528 and miR-1299 or CDK8 was predicted by online database confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft mice model was constructed to reveal the role of circ_0006528 on tumor growth in vivo. Results Circ_0006528 was significantly up-regulated and miR-1299 was down-regulated in PTX-resistant breast cancer tissues and cells compared with control groups. CDK8 protein expression was dramatically upregulated in PTX-resistant breast cancer tissues and cells as compared to control groups. Loss-of-function experiments revealed that circ_0006528 knockdown decreased IC50 value of PTX and restrained proliferation, migration, invasion and autophagy, whereas induced apoptosis of PTX-resistant breast cancer cells in vitro. The inhibitory effects of sh-circ_0006528 on the progression of PTX-resistant breast cancer cells were reversed by decreasing miR-1299 or increasing CDK8 expression. Furthermore, circ_0006528 could modulate CDK8 expression by sponging miR-1299. Circ_0006528 silencing impeded the growth of PTX-resistant tumors by regulating miR-1299/CDK8 axis in vivo. Conclusion Circ_0006528 partially contributed to PTX resistance of breast cancer cells through up-regulating CDK8 expression by sponging miR-1299.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Zhenxing Zhang
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Qing Song
- Department of Oncology and Hematology, No. 989 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Pingdingshan, People's Republic of China
| | - Yanling Guo
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Puqiang Bao
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Huifeng Shui
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| |
Collapse
|
13
|
Liu T, Meng J, Zhang Y. miR‑592 acts as an oncogene and promotes medullary thyroid cancer tumorigenesis by targeting cyclin‑dependent kinase 8. Mol Med Rep 2020; 22:3316-3326. [PMID: 32945439 PMCID: PMC7453674 DOI: 10.3892/mmr.2020.11392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) is a relatively rare subtype of thyroid cancer, accounting for 5‑10% of all cases of thyroid cancer worldwide. Due to the current lack of knowledge regarding the tumorigenesis of MTC, the clinical treatment of MTC remains a challenge. It has been reported that microRNAs (miRNAs) regulate the progression of MTC; however, the regulatory network of miRNAs and the exact underlying mechanisms are not completely understood. In the present study, an miRNA expression profile (GSE40807), consisting of 80 samples, was downloaded and analyzed using Gene Expression Omnibus‑2R to identify differentially expressed miRNAs between MTC and normal samples. miR‑592 expression levels were significantly increased in MTC tissues and cell lines compared with normal tissues and cell lines. Patients with high miR‑592 expression levels exhibited a less favorable prognosis compared with patients with low miR‑592 expression. The results suggested that miR‑592 overexpression promoted TT and MZ‑CRC‑1 cell proliferation in vitro. In addition, miR‑592 negatively regulated cyclin‑dependent kinase 8 (CDK8) via targeted binding in MTC cells. Moreover, co‑transfection of CDK8 overexpression plasmid and miR‑592 mimic reversed miR‑592‑mediated MTC cell proliferation. In conclusion, miR‑592 may serve as an oncogene in MTC by decreasing the expression of CDK8, indicating that the miR‑592/CDK8 axis might serve as a promising therapeutic target for MTC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nuclear Medicine, The Affiliated Wuhan Central Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jingjing Meng
- Department of Thyroid and Breast Surgery, The Affiliated Wuhan Central Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yu Zhang
- Department of Surgery II, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
14
|
Li Z, Qin Y, Chen P, Luo Q, Shi H, Jiang X. miR‑135b‑5p enhances the sensitivity of HER‑2 positive breast cancer to trastuzumab via binding to cyclin D2. Int J Mol Med 2020; 46:1514-1524. [PMID: 32700749 PMCID: PMC7447305 DOI: 10.3892/ijmm.2020.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Trastuzumab has led to a marked improvement in the outcomes of patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. However, the effects of trastuzumab on HER-2-positive breast cancer are limited by the emergence of its cardiotoxicside effects. MicroRNA (miR)-135b-5p has been shown to inhibit tumor metastasis in breast cancer. The present study aimed to explore the effects of miR-135b-5p overexpression on the efficacy of trastuzumab in HER-2-positive breast cancer. Reverse transcription-quantitative PCR was performed to detect the levels of miR-135b-5p. Cell viability was evaluated with a Cell Counting Kit-8 assay. Annexin V/propidium iodide staining was employed to detect the number of apoptotic cells. Flow cytometry assay was performed to investigate the cell cycle. Western blotting was used to detect the expression levels of Bax, cleaved caspase-3, Bcl-2, cyclin D2, p27Kip1 and cyclin E1. Cell migration and invasion were detected by Transwell assay. Luciferase assays were conducted to identify the target gene of miR-135b-5p. In addition, an in vivo tumor xenograft model was established. miR-135b-5p agomir significantly enhanced the anti-proliferative effect of trastuzumab on HER-2-positive breast cancer cells via the induction of apoptosis, whereas the anti-metastatic effect of trastuzumab was enhanced by miR-135b-5p agomir treatment. Subsequently, luciferase assays indicated that cyclin D2 was the direct target of miR-135b-5p, whereas overexpression of the latter arrested cell cycleduring the G0/G1 phase. Moreover, miR-135b-5p agomir notably increased the antitumor effect of trastuzumab in vivo. The data demonstrated that miR-135b-5p sensitized HER-2-positive breast cancer cells to trastuzumab in vitro and in vivo by directly binding to cyclin D2. These results suggested that the combination of miR-135b-5p with trastuzumab may be a therapeutic strategy for patients with HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Zhilan Li
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yiyu Qin
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Peihong Chen
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiong Luo
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Haiyan Shi
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Xiudi Jiang
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
15
|
Sun S, Ma J, Xie P, Wu Z, Tian X. Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1α signaling pathway. J Gene Med 2020; 22:e3230. [PMID: 32436353 PMCID: PMC7685107 DOI: 10.1002/jgm.3230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia‐responsive miRs have been frequently reported in the growth of various malignant tumors. The present study aimed to investigate whether hypoxia‐responsive miR‐141–3p was implicated in the pathogenesis of breast cancer via mediating the high‐mobility group box protein 1 (HMGB1)/hypoxia‐inducible factor (HIF)‐1α signaling pathway. Materials and methods miRs expression profiling was filtrated by miR microarray assays. Gene and protein expression levels, respectively, were examined by a quantitative reverse transcriptase‐polymerase chaion reaction and western blotting. Cell migration and invasion were analyzed using a transwell assay. Cell growth was determined using nude‐mouse transplanted tumor experiments. Results miR‐141–3p was observed as a hypoxia‐responsive miR in breast cancer. miR‐141–3p was down‐regulated in breast cancer specimens and could serve as an independent prognostic factor for predicting overall survival in breast cancer patients. In addition, the overexpression of miR‐141–3p could inhibit hypoxia‐induced cell migration and impede human breast cancer MDA‐MB‐231 cell growth in vivo. Mechanistically, the hypoxia‐related HMGB1/HIF‐1α signaling pathway might be a possible target of miR‐141–3p with respect to preventing the development of breast cancer. Conclusions Our finding provides a new mechanism by which miR‐141–3p could prevent hypoxia‐induced breast tumorigenesis via post‐transcriptional repression of the HMGB1/HIF‐1α signaling pathway.
Collapse
Affiliation(s)
- Shanping Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Jinglin Ma
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Panpan Xie
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
16
|
Yuan B, Guan Q, Yan T, Zhang X, Xu W, Li J. LncRNA HCP5 Regulates Pancreatic Cancer Progression by miR-140-5p/CDK8 Axis. Cancer Biother Radiopharm 2020; 35:711-719. [PMID: 32407143 DOI: 10.1089/cbr.2019.3294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a leading cause of cancer-related deaths worldwide. Human leukocyte antigen complex P5 (HCP5), a member of long noncoding RNAs (lncRNAs), was reported to be associated with the poor prognosis of PC. However, the mechanism of HCP5 in regulating the progression of PC remains poorly defined. Materials and Methods: Quantitative real-time polymerase chain reaction was performed to detect the expression levels of HCP5, microRNA (miR)-140-5p, and cyclin-dependent kinase 8 (CDK8) in PC tissues and cells. Cell counting kit-8 (CCK-8) assay was utilized to check cell proliferation. Transwell assay was employed to evaluate the abilities of cell migration and invasion. Xenograft tumor model was established to investigate the biological role of HCP5 in PC in vivo. The interaction between miR-140-5p and HCP5 or CDK8 was predicted by starBase or TargetScan, respectively. The dual-luciferase reporter assay was conducted to corroborate the interaction. The protein level of CDK8 was measured by Western blot. Results: HCP5 and CDK8 were significantly upregulated in PC tissues and cells, opposite to the expression of miR-140-5p. High expression of HCP5 contributed to the low survival rate and HCP5 silencing inhibited proliferation, migration, and invasion of PC cells in vitro. Simultaneously, in vivo experiments indicated that downregulation of HCP5 suppressed tumor growth. In addition, miR-140-5p was a target of HCP5 and bound to the 3'-untranslated region (3'UTR) of CDK8. Further studies revealed that overexpression of CDK8 reversed the miR-140-5p-mediated inhibitory effect on PC progression. Moreover, downregulation of miR-140-5p or upregulation of CDK8 inverted the silencing-mediated repressive impact of HCP5 on PC progression. Conclusion: Downregulation of HCP5 impeded PC progression by downregulating CDK8 via sponging miR-140-5p.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Qiang Guan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Tinghai Yan
- Department of Oncology, Wudi County People's Hospital, Binzhou, China
| | - Xiaobin Zhang
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Wuzhong Xu
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Jiangong Li
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| |
Collapse
|
17
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
18
|
Ma D, Chen X, Shen XB, Sheng LQ, Liu XH. Binding patterns and structure–activity relationship of CDK8 inhibitors. Bioorg Chem 2020; 96:103624. [DOI: 10.1016/j.bioorg.2020.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|