1
|
Chang HH, Chang AYW, Tsai BC, Chen YJ, Wu SG, Chen LJ, Lin YX, Hsueh YS. Ethanol extract of Vanilla planifolia stems reduces PAK6 expression and induces cell death in glioblastoma cells. J Cell Mol Med 2024; 28:e70065. [PMID: 39233332 PMCID: PMC11374694 DOI: 10.1111/jcmm.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant tumour with a poor prognosis. Therefore, potential treatment strategies and novel therapeutic targets have gained increased attention. Our data showed that the ethanol extract of Vanilla planifolia stem (VAS) significantly decreased the viability and the colony formation of GBM cells. Moreover, VAS induced the cleavage of MAP1LC3, a marker of autophagy. Further RNA-seq and bioinformatic analysis revealed 4248 differentially expressed genes (DEGs) between VAS-treated GBM cells and the control cells. Protein-protein interactions between DEGs with fold changes less than -3 and more than 5 were further analysed, and we found that 16 and 9 hub DEGs, respectively, were correlated with other DEGs. Further qPCR experiments confirmed that 14 hub DEGs was significantly downregulated and 9 hub DEGs was significantly upregulated. In addition, another significantly downregulated DEG, p21-activated kinase 6 (PAK6), was correlated with the overall survival of GBM patients. Further validation experiments confirmed that VAS significantly reduced the mRNA and protein expression of PAK6, which led to the abolition of cell viability and colony formation. These findings demonstrated that VAS reduced cell viability, suppressed colony formation and induced autophagy and revealed PAK6 and other DEGs as potential therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Alice Y W Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Chen Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ju Chen
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Sung-Ghun Wu
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Li-Jyun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Xuan Lin
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yuan-Shuo Hsueh
- Department of Physiology, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
3
|
Song B, Xu C, Zhang Y, Shan Y. Circ_ATAD3B inhibits cell proliferation of breast cancer via mediating the miR-570-3p/MX2 axis. Prev Med 2023; 173:107568. [PMID: 37286092 DOI: 10.1016/j.ypmed.2023.107568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
It has been discovered that some circular RNAs can serve as excellent therapeutic targets for breast cancer (BC). However, the biological role that circ ATAD3B plays in BC is not yet completely understood. As a result, the purpose of this work was to evaluate the function of circ_ATAD3B in the development of BC. Three different GEO datasets were used to compile the expression profiles of circRNAs related to BC (GSE101124, GSE165884, and GSE182471). CCK-8 and the production of clones, in addition to RT-PCR and western blot assays, were utilized in this study to evaluate the regulation of these three biological molecules in the process of BC carcinogenesis.circ_ATAD3B was the only potential BC-related circRNA that was significantly reduced in BC tumor tissues, and it functioned as a miR-570-3p sponge to suppress cell survival and proliferation, as stated by the aforementioned two algorithms. The expression of MX2 was boosted when circ_ATAD3B was used to sponge miR-570-3p. The inhibitory effect that circ_ATAD3B has on the malignant phenotype of BC cells was overcome by the expression of miR-570-3p through up-regulation and MX2 through down-regulation. The tumor suppressor circ_ATAD3B prevents cancer progression by regulating the miR-570-3p/MX2 pathway. Circ_ATAD3B may be a candidate for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing 310012, Zhejiang, China
| | - Ce Xu
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Yuanyuan Shan
- Hangzhou Mushi Biotechnology Co., LTD., Hangzhou, China.
| |
Collapse
|
4
|
Deng Y, Wang F, Wu X, Du K, Yang Q, Xia T. The m6A-regulation and single cell effect pattern in sunitinib resistance on clear cell renal cell carcinoma: Identification and validation of targets. Front Pharmacol 2023; 14:1131610. [PMID: 37063301 PMCID: PMC10102343 DOI: 10.3389/fphar.2023.1131610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Sunitinib is the main target drug for clear cell renal cell carcinoma. However, the effect of sunitinib is often limited by acquired drug resistance.Methods: The open-accessed data used in this study were obtained from different online public databases, which were analyzed using the R software. The RNA level of specific genes was detected using quantitative Real-Time PCR. Sunitinib-resistant cell lines were constructed based on protocol get from the previous study. Colony formation and Cell Counting Kit-8 assays were applied to detect cell proliferation ability.Results: In this study, through publicly available data and high-quality analysis, we deeply explored the potential biological mechanisms that affect the resistance of sunitinib. Detailed, data from GSE64052, GSE76068 and The Cancer Genome Atlas were extracted. We identified the IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 were associated with sunitinib resistance. Single-cell analysis, prognosis analysis and m6A regulatory network were conducted to investigate their role. Moreover, the MX2 was selected for further analysis, including its biological role and effect on the ccRCC microenvironment. Interestingly, we noticed that MX2 might be an immune-related gene that could affect the response rate of immunotherapy. Then, in vitro experiments validated the overexpression of MX2 in sunitinib-resistance cells. Colony formation assay indicated that the knockdown of MX2 could remarkably inhibit the proliferation ability of 786-O-Res and Caki-1-Res when exposed to sunitinib.Conclusion: In summary, through publicly available data and high-quality analysis, we deeply explored the potential biological mechanisms that affect the resistance of sunitinib. MX2 was selected for further analysis, including its biological role and effect on the ccRCC microenvironment. Finally, in vitro experiments were used to validate its role in ccRCC.
Collapse
Affiliation(s)
- Yanxi Deng
- Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinhui Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kangming Du
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qing Yang
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Qing Yang, ; Ting Xia,
| | - Ting Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Qing Yang, ; Ting Xia,
| |
Collapse
|
5
|
Han M, Liang C, Liu Y, He X, Chu M. Integrated Transcriptome Analysis Reveals the Crucial mRNAs and miRNAs Related to Fecundity in the Hypothalamus of Yunshang Black Goats during the Luteal Phase. Animals (Basel) 2022; 12:ani12233397. [PMID: 36496918 PMCID: PMC9738480 DOI: 10.3390/ani12233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
A normal estrus cycle is essential for the breeding of goats, and the luteal phase accounts for most of the estrus cycle. The corpus luteum (CL) formed during the luteal phase is a transient endocrine gland that is crucial for the reproductive cycle and pregnancy maintenance, and is controlled by many regulatory factors. However, the molecular mechanism of the hypothalamus effect on the reproductive performance of different litter sizes during the luteal phase of goats has not been elucidated. In this study, RNA-sequencing was used to analyze the mRNA and miRNA expression profiles of the hypothalamic tissues with the high-fecundity goats during the luteal phase (LP-HF) and low-fecundity goats during the luteal phase (LP-LF). The RNA-seq results found that there were 1963 differentially expressed genes (DEGs) (890 up-regulated and 1073 down-regulated). The miRNA-seq identified 57 differentially expressed miRNAs (DEMs), including 11 up-regulated and 46 down-regulated, of which 199 DEGs were predicted to be potential target genes of DEMs. Meanwhile, the functional enrichment analysis identified several mRNA-miRNA pairs involved in the regulation of the hypothalamic activity, such as the common target gene MEA1 of novel-miR-972, novel-miR-125 and novel-miR-403, which can play a certain role as a related gene of the reproductive development in the hypothalamic-pituitary-gonadal (HPG) axis and its regulated network, by regulating the androgen secretion. While another target gene ADIPOR2 of the novel-miR-403, is distributed in the hypothalamus and affects the reproductive system through a central role on the HPG axis and a peripheral role in the gonadal tissue. An annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes, such as anion binding (GO:0043168) and small molecule binding (GO: 0036094). Subsequently, the KEGG(Kyoto Encyclopedia of Genes and Genomes) pathways were performed to analyze the miRNA-mRNA pairs with negatively correlated miRNAs. We found that the GnRH signaling pathway (ko04912), the estrogen signaling pathway (ko04915), the Fc gamma R-mediated phagocytosis (ko04666), and the IL-17 signaling pathway (ko04657), etc., were directly and indirectly associated with the reproductive process. These targeting interactions may be closely related to the reproductive performance of goats. The results of this study provide a reference for further research on the molecular regulation mechanism for the high fertility in goats.
Collapse
Affiliation(s)
- Miaoceng Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62819850
| |
Collapse
|
6
|
Chatterjee A, Bararia A, Ganguly D, Mondal PK, Roy P, Banerjee S, Ghosh S, Gulati S, Ghatak S, Chattopadhay BK, Basu P, Chatterjee A, Sikdar N. DNA methylome in pancreatic cancer identified novel promoter hyper-methylation in NPY and FAIM2 genes associated with poor prognosis in Indian patient cohort. Cancer Cell Int 2022; 22:334. [PMID: 36329447 PMCID: PMC9635159 DOI: 10.1186/s12935-022-02737-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the leading cancers worldwide and has a poor survival, with a 5-year survival rate of only 8.5%. In this study we investigated altered DNA methylation associated with PDAC severity and prognosis. METHODS Methylome data, generated using 450 K bead array, was compared between paired PDAC and normal samples in the TCGA cohort (n = 9) and our Indian cohort (n = 7). The total Indian Cohort (n = 75) was split into cohort 1 (n = 7), cohort 2 (n = 22), cohort 3 (n = 26) and cohort 4 (n = 20).Validation of differential methylation (6 selected CpG loci) and associated gene expression for differentially methylated genes (10 selected gDMs) were carried out in separate validation cohorts, using MSP, RT-PCR and IHC correlations between methylation and gene expression were observed in TCGA, GTEx cohorts and in validation cohorts. Kaplan-Meier survival analysis was done to study differential prognosis, during 2-5 years of follow-up. RESULTS We identified 156 DMPs, mapped to 91 genes (gDMs), in PDAC; 68 (43.5%) DMPs were found to be differentially methylated both in TCGA cohort and our cohort, with significant concordance at hypo- and hyper-methylated loci. Enrichments of "regulation of ion transport", "Interferon alpha/beta signalling", "morphogenesis and development" and "transcriptional dysregulation" pathways were observed among 91 gDMs. Hyper-methylation of NPY and FAIM2 genes with down-regulated expression in PDAC, were significantly associated with poor prognosis in the Indian patient cohort. CONCLUSIONS Ethnic variations among populations may determine the altered epigenetic landscape in the PDAC patients of the Indian cohort. Our study identified novel differentially methylated genes (mainly NPY and FAIM2) and also validated the previously identified differentially methylated CpG sites associated with PDAC cancer patient's survival. Comparative analysis of our data with TCGA and CPTAC cohorts showed that both NPY and FAIM2 hyper-methylation and down-regulations can be novel epigenetically regulated genes in the Indian patient population, statistically significantly associated with poor survival and advanced tumour stages.
Collapse
Affiliation(s)
| | - Akash Bararia
- Biological Sciences Division, Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, West Bengal, 700108, India
| | | | - Pronoy Kanti Mondal
- Biological Sciences Division, Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, West Bengal, 700108, India
| | - Paromita Roy
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Sudeep Banerjee
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sumit Gulati
- Department of HPB Surgery, Apollo Multispecialty Hospital, Kolkata, India
| | - Supriyo Ghatak
- Department of HPB Surgery, Apollo Multispecialty Hospital, Kolkata, India
| | | | | | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nilabja Sikdar
- Biological Sciences Division, Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
7
|
Grave N, Scheffel TB, Cruz FF, Rockenbach L, Goettert MI, Laufer S, Morrone FB. The functional role of p38 MAPK pathway in malignant brain tumors. Front Pharmacol 2022; 13:975197. [PMID: 36299892 PMCID: PMC9589890 DOI: 10.3389/fphar.2022.975197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are extremely debilitating malignant brain tumors with very limited response to therapies. The initiation and progression of gliomas can be attributed to several molecular abnormalities, such as mutations in important regulatory networks. In this regard, the mitogen-activated protein kinases (MAPKs) arise as key signaling pathways involved in cell proliferation, survival, and differentiation. MAPK pathway has been altered in most glial tumors. In glioma cells, the activation of p38 MAPK contributes to tumor invasion and metastasis and is positively correlated with tumor grade, being considered a potential oncogenic factor contributing to brain tumorigenesis and chemotherapy resistance. Hence, a better understanding of glioma pathogenesis is essential to the advancement of therapies that provide extended life expectancy for glioma patients. This review aims to explore the role of the p38 MAPK pathway in the genesis and progression of malignant brain tumors.
Collapse
Affiliation(s)
- Nathália Grave
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thamiris Becker Scheffel
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Fernandes Cruz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Inês Goettert
- Laboratorio de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Fernanda Bueno Morrone,
| |
Collapse
|
8
|
Zhang J, Fan M, Jin C, Wang Z, Yao Y, Shi Y, Hu X, Wan Y. NFIC1 suppresses migration and invasion of breast cancer cells through interferon-mediated Jak-STAT pathway. Arch Biochem Biophys 2022; 727:109346. [PMID: 35798053 DOI: 10.1016/j.abb.2022.109346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
NFIC1, the longest isoform of NFIC, is essential for the regulation on spatiotemporal expression of drug-metabolizing genes in liver. However, the role of NFIC1 in breast cancer is not clear. Here we showed that increased expression of NFIC1 suppressed the migration and invasion of MCF-7 cells. NFIC1 overexpression increased the expression of IFNB1, IFNL1, IFNL2 and IFNL3, and the activation of interferon-mediated Jak-STAT pathway was enhanced by NFIC1 overexpression. Treatment with Jak-STAT pathway inhibitors, Filgotinib or Ruxolitinib, reversed the suppressive effects of NFIC1 overexpression on migration and invasion of MCF-7 cells. In addition, we found that MX1 and MX2, two target genes of Jak-STAT pathway, mediated the migration and invasion of MCF-7 cells. These results demonstrated that NFIC1 inhibited the migration and invasion in MCF-7 cells through interferon-mediated activation of Jak-STAT pathway, indicating that Jak-STAT pathway might be a potential therapeutic target for preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Jing Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Mingyue Fan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Chanjuan Jin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Zhaoying Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Yao
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
9
|
Wang Z, Wang J, Zhao H, Zhao T, Chen Y, Jiang M, Zhang S, Wei Y, Zhang J, Zhou Y, Shi S, Fu Z, Yang Y, Zhang Y, Yang L, Que J, Liu K. Targeting the SOX2/PARP1 complex to intervene in the growth of esophageal squamous cell carcinoma. Biomed Pharmacother 2022; 153:113309. [PMID: 35738180 DOI: 10.1016/j.biopha.2022.113309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated SOX2 protein levels are closely correlated with the increased incidence of esophageal squamous cell carcinoma (ESCC). However, establishing effective target measures for ESCC treatments continue to be researched. It has been previously proposed that SOX2 represents a potential therapeutic target for ESCC. Here, we found that the enzyme Poly(ADP-Ribose) polymerase 1 (PARP1) enriched in ESCCs interact with SOX2. Inhibition of PARP1 with 3-aminobenzamide (3-ABA) or shRNA knockdown reduced the proliferation of ESCCs, accompanied by decreased protein levels of SOX2. RNA sequencing demonstrated that PARP1 inhibition affected multiple signaling pathways involved in cancer cell proliferation. Additionally, 3-ABA synergistically suppressed the growth of ESCC cells when combined with cisplatin, and metformin potentiated the suppressive effect of 3-ABA on ESCC cell growth. Together these findings suggest that targeting SOX2 binding partner PARP1 provides a possible avenue to treat patients with high levels of SOX2.
Collapse
Affiliation(s)
- Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Junkai Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- Department of Gastroenterology of The Children's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihui Zhang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian 350025, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, NY 14627, USA
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
10
|
Xing XL, Liu Y, Liu J, Zhou H, Zhang H, Zuo Q, Bu P, Duan T, Zhou Y, Xiao Z. Comprehensive Analysis of Ferroptosis- and Immune-Related Signatures to Improve the Prognosis and Diagnosis of Kidney Renal Clear Cell Carcinoma. Front Immunol 2022; 13:851312. [PMID: 35619698 PMCID: PMC9128788 DOI: 10.3389/fimmu.2022.851312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/12/2022] [Indexed: 12/31/2022] Open
Abstract
Background Almost 40% of patients with kidney renal clear cell carcinoma (KIRC) with advanced cancers eventually develop to metastases, and their 5-year survival rates are approximately 10%. Aberrant DNA methylations are significantly associated with the development of KIRC. The aim of our present study was to identify suitable ferroptosis- and immune-related (FI) biomarkers correlated with aberrant methylations to improve the prognosis and diagnosis of KIRC. Methods ChAMP and DESeq2 in R (3.6.2) were used to screen the differentially expressed methylation probes and differentially expressed genes, respectively. Univariate and multivariate Cox regression were used to identify the overall survival (OS)-related biomarkers. Results We finally identified five FI biomarkers (CCR4, CMTM3, IFITM1, MX2, and NR3C2) that were independently correlated with the OS of KIRC. The area under the curve value of the receiver operating characteristic value of prognosis model was 0.74, 0.68, and 0.72 in the training, validation, and entire cohorts, respectively. The sensitivity and specificity of the diagnosis model were 0.8698 and 0.9722, respectively. In addition, the prognosis model was also significantly correlated with several immune cells and factors. Conclusion Our present study suggested that these five FI-DEGs (CCR4, CMTM3, IFITM1, MX2, and NR3C2) could be used as prognosis and diagnosis biomarkers for patients with KIRC, but further cross-validation clinical studies are still needed to confirm them.
Collapse
Affiliation(s)
- Xiao-Liang Xing
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Yan Liu
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
| | - Jiheng Liu
- Department of Emergency, First Hospital of Changsha, Changsha, China
| | - Huanfa Zhou
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
| | - Huirong Zhang
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
| | - Qi Zuo
- Department of Emergency, First Hospital of Changsha, Changsha, China
| | - Ping Bu
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
| | - Tong Duan
- Department of Emergency, First Hospital of Changsha, Changsha, China
| | - Yan Zhou
- Department of Emergency, First Hospital of Changsha, Changsha, China
| | - Zhiquan Xiao
- Department of General Medicine, University of South China affiliated Changsha Central Hospital, Changsha, China
| |
Collapse
|
11
|
Xu X, Deng W, Zhang W, Zhang J, Wang M, Shan S, Liu H. Transcriptome Analysis of Rat Lungs Exposed to Moxa Smoke after Acute Toxicity Testing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5107441. [PMID: 34961819 PMCID: PMC8710166 DOI: 10.1155/2021/5107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022]
Abstract
The increasing use of moxibustion has led to a debate concerning the safety of this treatment in human patients. Inhalation of cigarette smoke induces lung inflammation and granulomas, the proliferation of alveolar epithelial cells, and other toxic effects; therefore, it is important to assess the influence of inhaled moxa smoke on the lungs. In the present study, a novel poisoning cabinet was designed and used to assess the acute toxicity of moxa smoke in rats. We evaluated pathological changes in rat lung tissue and analyzed differentially expressed genes (DEGs) using RNA-seq and transcriptomic analyses. Our results show that the maximum tolerable dose of moxa smoke was 290.036 g/m³ and LC50 was 537.65 g/m³. Compared with that of the control group, the degree of inflammatory cell infiltration in the lung tissues of group A rats (all dead group) was increased, while that in group E rats (all live group) remained unchanged. GO and KEGG enrichment analyses showed that the DEGs implicated in cell components, binding, and cancer were significantly enriched in the experimental groups compared with the profile of the control group. The expressions of MAFF, HSPA1B, HSPA1A, AOC1, and MX2 determined using quantitative real-time PCR were similar to those determined using RNA-seq, confirming the reliability of RNA-seq data. Overall, our results provide a basis for future evaluations of moxibustion safety and the development of moxibustion-based technology.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Deng
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wanqing Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Junhua Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Muchen Wang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Si Shan
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hongning Liu
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
12
|
Wei Y, Chen X, Ren X, Wang B, Zhang Q, Bu H, Qian J, Shao P. Identification of MX2 as a Novel Prognostic Biomarker for Sunitinib Resistance in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:680369. [PMID: 34306023 PMCID: PMC8299280 DOI: 10.3389/fgene.2021.680369] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Antiangiogenic agents that specifically target vascular endothelial growth factor receptor (VEGFR), such as sunitinib, have been utilized as the standard therapy for metastatic clear cell renal cell carcinoma (ccRCC) patients. However, most patients eventually show no responses to the targeted drugs, and the mechanisms for the resistance remain unclear. This study is aimed to identify pivotal molecules and to uncover their potential functions involved in this adverse event in ccRCC treatment. Methods Two datasets, GSE64052 and GSE76068, were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the limma package in R software. The gene set enrichment analysis (GSEA) was conducted using clusterProfiler package. A protein-protein interaction (PPI) network was built using the STRING database and Cytoscape software. Kaplan-Meier survival curves were plotted using R software. qRT-PCR and Western blotting were used to detect the MX2 and pathway expression in RCC cell lines. Sunitinib-resistant cell lines were constructed, and loss-of-function experiments were conducted by knocking down MX2. All statistical analyses were performed using R version 3.6.1 and SPSS 23.0. Results A total of 760 DEGs were derived from two datasets in GEO database, and five hub genes were identified, among which high-level MX2 exhibited a pronounced correlation with poor overall survival (OS) in sunitinib-resistant ccRCC patients. Clinical correlation analysis and Gene Set Variation Analysis (GSVA) on MX2 showed that the upregulation of MX2 was significantly related to the malignant phenotype of ccRCC, and it was involved in several pathways and biological processes associated with anticancer drug resistance. qRT-PCR and Western blotting revealed that MX2 was distinctly upregulated in sunitinib-resistant RCC cell lines. Colony formation assay and Cell Counting Kit-8 (CCK8) assay showed that MX2 strongly promoted resistant capability to sunitinib of ccRCC cells. Conclusion MX2 is a potent indicator for sunitinib resistance and a therapeutic target in ccRCC patients.
Collapse
Affiliation(s)
- Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinglin Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Antonaros F, Zenatelli R, Guerri G, Bertelli M, Locatelli C, Vione B, Catapano F, Gori A, Vitale L, Pelleri MC, Ramacieri G, Cocchi G, Strippoli P, Caracausi M, Piovesan A. The transcriptome profile of human trisomy 21 blood cells. Hum Genomics 2021; 15:25. [PMID: 33933170 PMCID: PMC8088681 DOI: 10.1186/s40246-021-00325-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell gene expression profiles obtained by total RNA sequencing (RNA-Seq). RESULTS The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for 17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3). The altered expression of genes involved in mitochondrial translation and energy production also emerged, followed by the altered expression of genes encoding for the folate cycle enzyme, GART, and the folate transporter, SLC19A1. CONCLUSIONS The alteration of these pathways might be linked and involved in the manifestation of ID in DS.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Rossella Zenatelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.,Current Address: Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 24123, Brescia, BS, Italy
| | - Giulia Guerri
- MAGI'S Lab, Via delle Maioliche 57/D, 38068, Rovereto, TN, Italy
| | - Matteo Bertelli
- MAGI'S Lab, Via delle Maioliche 57/D, 38068, Rovereto, TN, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Francesca Catapano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.,Current Address: Department of Medical Biotechnologies, University of Siena, Strada delle Scotte, 4, 53100, Siena, SI, Italy
| | - Alice Gori
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Giuseppe Ramacieri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
14
|
Chai M, Gu C, Shen Q, Liu J, Zhou Y, Jin Z, Xiong W, Zhou Y, Tan W. Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α. Stem Cell Res Ther 2020; 11:343. [PMID: 32762747 PMCID: PMC7409505 DOI: 10.1186/s13287-020-01853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Inadequate vascularization is a challenge in bone tissue engineering because internal cells are prone to necrosis due to a lack of nutrient supply. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to construct prevascularized bone tissue in osteogenic induction medium (OIM) in vitro. The angiogenic capacity of HUVECs was limited in the coculture system. In this study, the effects of the components in the medium on HUVEC angiogenesis were analyzed. METHODS The coculture system was established in OIM. Alizarin red staining and alkaline phosphatase staining were used to assess the osteogenic ability of MSCs. A Matrigel tube assay was used to assess the angiogenic ability of HUVECs in vitro. The proliferation of HUVECs was evaluated by cell counting and CCK-8 assays, and migration was evaluated by the streaked plate assay. The expression levels of angiogenesis-associated genes and proteins in HUVECs were measured by qRT-PCR and Western blotting, respectively. RESULTS Dexamethasone in the OIM suppressed the proliferation and migration of HUVECs, inhibiting the formation of capillary-like structures. Our research showed that dexamethasone stimulated HUVECs to secrete tissue inhibitor of metalloproteinase (TIMP-3), which competed with vascular endothelial growth factor (VEGF-A) to bind to vascular endothelial growth factor receptor 2 (VEGFR2, KDR). This effect was related to inhibiting the phosphorylation of ERK and AKT, which are two downstream targets of KDR. However, under hypoxia, the enhanced expression of hypoxia-inducible factor-1α (HIF-1α) decreased the expression of TIMP-3 and promoted the phosphorylation of KDR, improving HUVEC angiogenesis in the coculture system. CONCLUSION Coculture of hypoxia-preconditioned HUVECs and MSCs showed robust angiogenesis and osteogenesis in OIM, which has important implications for prevascularization in bone tissue engineering in the future.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Qihua Shen
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Jiaxing Liu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| |
Collapse
|
15
|
Chen J, Hou C, Wang P, Yang Y, Zhou D. Grade II/III Glioma Microenvironment Mining and Its Prognostic Merit. World Neurosurg 2019; 132:e76-e88. [PMID: 31518750 DOI: 10.1016/j.wneu.2019.08.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The tumor microenvironment greatly influences tumor formation, invasion, and progression. The ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues) algorithm quantifies stromal and immune components in a tumor, reflecting the tumor microenvironment. This study aimed to explore key prognostic genes in a grade II/III glioma microenvironment. METHODS We obtained stromal/immune scores for the Cancer Genome Atlas (TCGA) grade II/III glioma cohort from the online ESTIMATE portal. The associations of stromal/immune scores with clinicopathologic characteristics and overall survival of patients with grade II/III glioma were assessed by the Mann-Whitney U test and the Kaplan-Meier method, respectively. Functional enrichment analysis and protein-protein interaction network assessments were employed to analyze differentially expressed genes (DEGs). The top 7 genes with 5 or more edges in the protein-protein interaction network were selected. For validation, CGGA grade II/III glioma data were analyzed. RESULTS The results showed that elevated stromal/immune/ESTIMATE score was significantly associated with poor survival of patients with TCGA grade II/III glioma. Functional enrichment analysis showed that DEGs were associated with immune cell regulation, extracellular matrix, cytokine activation, and receptor binding. The selected DEGs (interleukin-10, beta-2 microglobulin, C-C motif chemokine ligand 5, cluster of differentiation 74, human leukocyte antigen-DRA, lymphocyte cytosolic protein 2, and myxovirus resistance protein 1) showed prognostic values in patients with grade II/III glioma of the TCGA and CGGA database. CONCLUSIONS Stromal/immune/ESTIMATE scores have prognostic values in patients with grade II/III glioma. The selected DEGs, including interleukin-10, beta-2 microglobulin, C-C motif chemokine ligand 5, cluster of differentiation 74, human leukocyte antigen-DRA, lymphocyte cytosolic protein 2, and myxovirus resistance protein 1, associated with tumor immunity and microenvironment, have prognostic values in grade II/III glioma. Further investigation of these genes could provide novel insights into the tumor microenvironment of glioma.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Chongxian Hou
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|