1
|
Alibakhshi R, Soleimani M, Yari K, Kalhori AA, Karami M, Kalhori MR. Role of miRNA polymorphisms on male and female infertility and recurrent implantation failure. J Obstet Gynaecol Res 2025; 51:e16281. [PMID: 40174631 DOI: 10.1111/jog.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE MiRNAs regulate gene expression, impacting reproductive health, such as infertility and implantation failure. This study investigated the association between miRNA polymorphisms and male infertility (azoospermia, oligospermia), female infertility (endometriosis), and recurrent implantation failure in IVF. METHODS In order to find relevant articles, a search was conducted in PubMed, WOS, Scopus, and the Cochrane Library databases using Mesh terms and Entry terms with the keywords (miRNA OR microRNA polymorphism) AND (abortion OR miscarriage OR infertility OR sterility OR pregnancy loss OR implantation failure). RESULTS The study revealed miRNA polymorphisms linked to a higher risk of male and female infertility and repeated implantation failure in IVF. These results underscore the significance of genetic variations in miRNAs in developing reproductive issues and the promise of personalized treatment strategies guided by genetic profiles. CONCLUSION These results provide valuable insights into the genetic basis of infertility and emphasize the need for further research to develop targeted diagnostic tools and therapies. Understanding the role of miRNA polymorphisms in reproductive health has significant implications for improving outcomes for couples struggling with infertility. By elucidating the genetic factors contributing to infertility, this study paves the way for personalized approaches to diagnosis and treatment, ultimately enhancing reproductive care.
Collapse
Affiliation(s)
- Reza Alibakhshi
- Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Ali Kalhori
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Karami
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Arendt W, Kleszczyński K, Gagat M, Izdebska M. Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins. Cells 2025; 14:360. [PMID: 40072086 PMCID: PMC11898689 DOI: 10.3390/cells14050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis. This review aims to summarize current knowledge on the involvement of key ABPs in the development and pathophysiology of endometriosis. We discuss how these proteins influence cytoskeletal remodeling, focal adhesion formation, and interactions with the extracellular matrix, contributing to the unique mechanical properties of endometriotic cells. Furthermore, we explore the putative potential of targeting ABPs as a therapeutic strategy to mitigate the invasive phenotype of endometriotic lesions. By elucidating the role of ABPs in endometriosis, this review provides a foundation for future research and innovative treatment approaches.
Collapse
Affiliation(s)
- Wioletta Arendt
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| |
Collapse
|
3
|
Wang M, Zheng L, Lin R, Ma S, Li J, Yang S. A comprehensive overview of exosome lncRNAs: emerging biomarkers and potential therapeutics in endometriosis. Front Endocrinol (Lausanne) 2023; 14:1199569. [PMID: 37455911 PMCID: PMC10338222 DOI: 10.3389/fendo.2023.1199569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Endometriosis is a gynecological condition that significantly impacting women's daily lives. In recent years, the incidence of endometriosis has been rising yearly and is now an essential contributor to female infertility. Exosomes are extracellular vesicles (EVs) that carry long noncoding RNA (lncRNA) and shield lncRNA from the outside environment thanks to their vesicle-like structure. The role of exosome-derived lncRNAs in endometriosis is also receiving more study as high-throughput sequencing technology develops. Several lncRNAs with variable expression may be crucial to the emergence and growth of endometriosis. The early diagnosis of endometriosis will be considerably improved by further high specificity and sensitivity Exosome lncRNA screening. Exosomes assist lncRNAs in carrying out their roles, offering a new target for creating endometriosis-specific medications. In order to serve as a reference for clinical research on the pathogenesis, diagnosis, and treatment options of endometriosis, this paper covers the role of exosome lncRNAs in endometriosis and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Jin X, Feng J, Cheng X. LncRNA IGF2-AS promotes endometriosis progression through targeting miR-370-3p/IGF2 axis and activating PI3K/AKT/mTOR signaling pathway. J Assist Reprod Genet 2022; 39:2699-2710. [PMID: 36508036 PMCID: PMC9790843 DOI: 10.1007/s10815-022-02638-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/12/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Endometriosis, a gynecological disease, is difficult to be cured. Currently, to identify more potential biomarkers for the early diagnosis of endometriosis is urgently needed. Insulin like growth factor 2 (IGF2) has been revealed to correlate with endometriosis. This research aimed to further explore the role of IGF2 and its up-stream mechanism in endometriosis. METHODS Primary ectopic endometrial stromal cells (EESCs) were extracted from ectopic endometrial tissues which were pathological endometrial tissues resected from three patients with II-III endometriosis. Primary normal endometrial stromal cells (NESCs) were extracted from normal endometrial tissues of two patients with grade III cervical dysplasia and one patient with uterine leiomyoma III. Four endometriotic cell lines (EEC145T, hEM15A, hEM5B2, and 12Z) and normal human endometrial epithelial cells (hEECs) were purchased. Cell proliferation, migration, and invasion were evaluated through functional assays. The molecular interaction between RNAs was investigated through mechanistic analyses. RESULTS We discovered that IGF2 was upregulated in purchased endometriotic cells and primary EESC. Suppression of IGF2 hampered cell proliferation, migration, and invasion. Furthermore, insulin-like growth factor 2 antisense RNA (IGF2-AS) was uncovered to positively regulate IGF2 expression and enhanced proliferative, migratory, and invasive abilities of endometriotic cells. Mechanistically, miR-370-3p was found to bind with IGF2-AS and IGF2. IGF2-AS competitively bind with miR-370-3p to upregulate IGF2. Furthermore, IGF2-AS was revealed to activate the PI3K/AKT/mTOR signaling pathway through targeting miR-370-3p/IGF2 axis. CONCLUSION IGF2-AS promotes endometriotic cell growth via regulating IGF2/miR-370-3p axis and further activating PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Jin
- VIP Ward, the First People's Hospital of Wenling, No.333, South Chuan'an Road, Chengxi Street, Wenling, 317500, China
| | - Jingjing Feng
- Department of Obstetrics and Gynecology, Nanjing Jiangbei People's Hospital, Nanjing, 210044, Jiangsu, China.
| | - Xiao Cheng
- VIP Ward, the First People's Hospital of Wenling, No.333, South Chuan'an Road, Chengxi Street, Wenling, 317500, China.
| |
Collapse
|
5
|
Hou Y, Zhou M, Li Y, Tian T, Sun X, Chen M, Xu W, Lu M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:797-811. [PMID: 35687049 DOI: 10.1002/mc.23422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yaxuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Guidance Center for Social Psychological Service, Wuhan Mental Health Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Xi M, Zhang G, Wang L, Chen H, Gao L, Zhang L, Yang Z, Shi H. Genetic Variations of CARMN Modulate Glioma Susceptibility and Prognosis in a Chinese Han Population. Pharmgenomics Pers Med 2022; 15:487-497. [PMID: 35592549 PMCID: PMC9112042 DOI: 10.2147/pgpm.s345764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Min Xi
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Gang Zhang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Hu Chen
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Luyi Zhang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Zhangkai Yang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Hangyu Shi
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
- Correspondence: Hangyu Shi, Department of Neurosurgery, Xi’an Children’s Hospital, #69, Xijuyuan Lane, Lianhu District, Xi’an, 710043, Shaanxi, People’s Republic of China, Tel/Fax +86-15202910508, Email
| |
Collapse
|
7
|
Jaafar SO, Jaffar JO, Ibrahim SA, Jarjees KK. MicroRNA Variants miR-27a rs895819 and miR-423 rs6505162, but not miR-124-1 rs531564, are Linked to Endometriosis and its Severity. Br J Biomed Sci 2022; 79:10207. [PMID: 35996508 PMCID: PMC8915672 DOI: 10.3389/bjbs.2021.10207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Background: While different studies have investigated the association of SNPs with female reproductive disorders, a limited number of studies have investigated the effect of microRNAs variants in endometriosis. In this study, we evaluated the prevalence and the association of three different miRNAs variants including, miR-27a rs895819, miR-124-1 rs531564, and miR-423 rs6505162 with endometriosis to help further elucidate the importance of these variants in female reproductive disorders. Methods: A total number of 440 women (220 cases and 220 controls) were included. DNA was extracted and genotyping of the SNPs was carried out by PCR. Results: The results showed that rs895819 and rs6505162 had a significant association with endometriosis under the dominant, recessive, co-dominant, and allelic model, but rs531564 was not linked to endometriosis. Our results also imply a protective effect on endometriosis severity for AG genotype and G allele in rs895819 (p < 0.001), and also for AA and AC genotypes in rs6505162 with severity in endometriosis (p < 0.001). Moreover, Hardy–Weinberg equilibrium, haplotype frequency, and linkage disequilibrium between SNPs were performed. Conclusion: miR-27a rs895819 and miR-423 rs6505162, but not miR-124-1 rs531564, are linked to endometriosis.
Collapse
Affiliation(s)
- S. O. Jaafar
- Department of Obstetrics and Gynecology, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - J. O. Jaffar
- Department of Obstetrics and Gynecology, Erbil Maternity Teaching Hospital, Erbil, Iraq
- *Correspondence: J. O. Jaffar, ,
| | - S. A. Ibrahim
- Department of Obstetrics and Gynecology, Erbil Maternity Teaching Hospital, Erbil, Iraq
| | - K. K. Jarjees
- Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Erbil, Iraq
| |
Collapse
|
8
|
Competitive endogenous RNA network and pathway-based analysis of LncRNA single-nucleotide polymorphism in myasthenia gravis. Sci Rep 2021; 11:23920. [PMID: 34907261 PMCID: PMC8671434 DOI: 10.1038/s41598-021-03357-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Myasthenia gravis (MG) is a complex neurological autoimmune disease with a pathogenetic mechanism that has yet to be elucidated. Emerging evidence has revealed that genes, non-coding RNAs and genetic variants play significant roles in the pathogenesis of MG. However, the molecular mechanisms of single nucleotide polymorphisms (SNPs) located on lncRNAs could disturb lncRNA-mediated ceRNA regulatory functions still unclear in MG. In this study, we collated 276 experimentally confirmed MG risk genes and 192 MG risk miRNAs. We then constructed a lncRNA-mediated ceRNA network for MG based on multi-step computational strategies. Next, we systematically integrated risk pathways and identified candidate SNPs in lncRNAs for MG based on data acquired from public databases. In addition, we constructed a pathway-based lncRNA-SNP mediated network (LSPN) that contained 128 lncRNAs targeting 8 MG risk pathways. By analyzing network, we propose a latent mechanism for how the “lncRNA-SNP-mRNA-pathway” axis affects the pathogenesis of MG. Moreover, 25 lncRNAs and 51 SNPs on lncRNAs were extracted from the “lncRNA-SNP-mRNA-pathway” axis. Finally, functional analyses demonstrated lncRNA-SNPs mediated ceRNA regulation pairs associated with MG participated in the MAPK signaling pathway. In summary, we constructed MG-specific lncRNA-SNPs mediated ceRNA regulatory networks based on pathway in the present study, which was helpful to elucidate the roles of lncRNA-SNPs in the pathogenesis of MG and provide novel insights into mechanism of lncRNA-SNPs as potential genetic risk biomarkers of MG.
Collapse
|
9
|
Hudson QJ, Proestling K, Perricos A, Kuessel L, Husslein H, Wenzl R, Yotova I. The Role of Long Non-Coding RNAs in Endometriosis. Int J Mol Sci 2021; 22:11425. [PMID: 34768856 PMCID: PMC8583837 DOI: 10.3390/ijms222111425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Endometriosis is a chronic gynecological disorder affecting the quality of life and fertility of many women around the world. Heterogeneous and non-specific symptoms may lead to a delay in diagnosis, with treatment options limited to surgery and hormonal therapy. Hence, there is a need to better understand the pathogenesis of the disease to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation but remain relatively under investigated in endometriosis. Mutational and transcriptomic studies have implicated lncRNAs in the pathogenesis of endometriosis. Single-nucleotide polymorphisms (SNPs) in lncRNAs or their regulatory regions have been associated with endometriosis. Genome-wide transcriptomic studies have identified lncRNAs that show deregulated expression in endometriosis, some of which have been subjected to further experiments, which support a role in endometriosis. Mechanistic studies indicate that lncRNAs may regulate genes involved in endometriosis by acting as a molecular sponge for miRNAs, by directly targeting regulatory elements via interactions with chromatin or transcription factors or by affecting signaling pathways. Future studies should concentrate on determining the role of uncharacterized lncRNAs revealed by endometriosis transcriptome studies and the relevance of lncRNAs implicated in the disease by in vitro and animal model studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (Q.J.H.); (K.P.); (A.P.); (L.K.); (H.H.); (R.W.)
| |
Collapse
|
10
|
Malla RR, Padmaraju V, Marni R, Kamal MA. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer. PHYTOMEDICINE 2021; 93:153782. [PMID: 34627097 DOI: 10.1016/j.phymed.2021.153782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions. PURPOSE OF STUDY To establish lncRNAs of TME as novel targets of natural compounds for lung cancer management. STUDY DESIGN Current study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME. RESULTS This review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer. CONCLUSION By critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India.
| | - Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
11
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
12
|
Wang X, Zhang J, Liu X, Wei B, Zhan L. Long noncoding RNAs in endometriosis: Biological functions, expressions, and mechanisms. J Cell Physiol 2020; 236:6-14. [PMID: 32506425 DOI: 10.1002/jcp.29847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Endometriosis refers to a benign chronic gynecological disorder, and is defined as the ectopic growth of endometrium in pelvic cavity. Endometriosis affects about 10% of reproductive-aged women. Unfortunately, the pathogenesis of endometriosis remains obscure, and the disease witnesses a lack of effective therapy approaches. Therefore, more research needs to be performed to throw light on endometriosis, its pathogenesis, and therapy. Long noncoding RNAs (lncRNAs), which are defined as functional cellular RNA longer than 200 nucleotides, have been implicated in many chronic disorders. It has been suggested that lncRNAs are closely related to the endometriosis process. Nevertheless, the molecular mechanisms by which lncRNAs associate with endometriosis should be elucidated more detailed. In our brief review, we first exhibit the aberrant lncRNAs expression in endometriosis. Then, we talk about the molecular mechanisms underlying lncRNAs in endometriosis. Finally, we also present the potential of lncRNAs as biomarkers for endometriosis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojing Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|