1
|
Xie F, Liu N, Liu X, Feng X, Yang Z, He Z, Cai J. Insights into folic acid functionalization of self-assembled octenyl succinic anhydride starch micelles towards targeted delivery of selenium nanoparticles. Int J Biol Macromol 2025; 308:142352. [PMID: 40120899 DOI: 10.1016/j.ijbiomac.2025.142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Selenium nanoparticles (SeNPs) exhibit significant potential in antitumor therapy. However, challenges such as aggregation and lack of targeting capability limit their application. Herein, we developed selenium-loaded octenyl succinic anhydride starch (OSAS) micelles functionalized with folic acid (FA) for targeted tumor delivery. The FA-OSAS-SeNPs were synthesized through self-assembly, incorporating SeNPs into FA-conjugated OSAS micelles. Fourier Transform Infrared (FTIR) spectroscopy and UV-visible spectrophotometry confirmed the successful synthesis of FA-OSAS-SeNPs. The nanoparticles exhibited an average size of 131.66 ± 7.88 nm and a zeta potential of -19.54 ± 0.33 mV, with encapsulation efficiency and drug loading capacity of approximately 87.28 % and 8.96 %, respectively. FA-OSAS-SeNPs demonstrated good stability across various conditions, including different dilution ratios, temperatures, pH levels, and ionic strengths. In vitro studies showed that FA-OSAS-SeNPs exhibited significant targeted inhibitory effects on cervical cancer (HeLa) cells and markedly increased intracellular ROS levels, inducing apoptosis. This study presents a novel and effective strategy for targeted SeNPs delivery systems in tumor therapy, offering a valuable reference for future development of nanomaterials for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Nian Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaofang Feng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhaoxing Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
2
|
Li R, Yang Y, Gao Y, Lv J, Dai C, Zhai Y, Mao C, Jiang J, Fan J, Yu Y, Wu L, Lin Z. Knowledge map of programmed cell death in esophageal cancer: a bibliometric analysis. Discov Oncol 2025; 16:609. [PMID: 40274628 PMCID: PMC12022209 DOI: 10.1007/s12672-025-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVES This study aimed to delineate the evolving knowledge structure of programmed cell death in esophageal cancer and identify key thematic trends, influential collaborations, and emerging areas for future research. METHODS A bibliometric approach was applied to 2677 publications retrieved from the Web of Science Core Collection (2000-2024). Three complementary tools-CiteSpace, VOSviewer, and bibliometrix-were employed to visualize co-citation networks, detect citation bursts, and map collaborative patterns among authors, institutions, and countries. Inclusion criteria focused on articles and reviews that addressed esophageal cancer in conjunction with apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, or related pathways. RESULTS Publication outputs grew markedly, reflecting a shift from early investigations of basic apoptotic mechanisms to broader explorations of necroptosis, pyroptosis, and ferroptosis. China led in publication volume and citations, driven by substantial governmental funding and large clinical cohorts. The United States and Japan also contributed significantly, forming international research networks that spanned Asia and Europe. Leading institutions, particularly Zhengzhou University, demonstrated extensive collaborations. Journals such as Oncology Letters and Oncology Reports were prominent outlets for new findings, while highly cited references highlighted hypoxia, immune checkpoint blockade, and emerging gene-editing strategies. Keyword analyses revealed the ascendance of immuno-oncology, network pharmacology, and translational applications targeting multiple regulated cell death pathways. CONCLUSION Bibliometric evidence underscores a rapid expansion of multidisciplinary research that integrates diverse cell death pathways in esophageal cancer. Continued international collaborations, leveraging advanced genomics and immunologic strategies, are poised to accelerate translational breakthroughs and enable more personalized, effective therapies.
Collapse
Affiliation(s)
- Rulin Li
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Yanchun Yang
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Yang Gao
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Jing Lv
- Department of Orthopedics, Ziyang Central Hospital, Ziyang, 641300, China
| | - Chuanqiang Dai
- Department of Orthopedics, Ziyang Central Hospital, Ziyang, 641300, China
| | - Yuanwei Zhai
- Department of Medical Imaging, Ziyang Central Hospital, Ziyang, 641300, China
| | - Chirong Mao
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Jiudong Jiang
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Jiangang Fan
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Yang Yu
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Liang Wu
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China
| | - Zhiwu Lin
- Department of Thoracic Surgery, Ziyang Central Hospital, Ziyang, 641300, China.
| |
Collapse
|
3
|
Acharya B, Behera A, Moharana S, Prajapati BG, Behera S. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chem Res Toxicol 2025; 38:521-541. [PMID: 40105412 DOI: 10.1021/acs.chemrestox.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Amulyaratna Behera
- School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha 754022, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon, Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | | |
Collapse
|
4
|
Gao J, Wang X, Ye S, Zhang Y, Qin Y. Ghrelin alleviates inflammation and pyroptosis by inhibiting TNF-α /caspase-8/caspase-3/ GSDME signalling pathways in an in vitro model of high glucose induced liver injury. Tissue Cell 2025; 93:102672. [PMID: 39721419 DOI: 10.1016/j.tice.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Diabetic liver injury (DLI) refers to liver injury resulting from prolonged chronic hyperglycemia and represents a significant complication associated with diabetes, The specific pathogenic mechanism of DLI remains incompletely understood. Tumor necrosis factor α (TNF-α) has been demonstrated to play a crucial role in diabetic complications through intricate signalling pathways, including pyroptosis. However, it remains uncertain whether TNF-α mediates pyroptosis in DLI, we initially established an in vitro model of DLI and confirmed the presence of an inflammatory state characterized by TNF-α in DLI. Furthermore, evidence of gasdermin E (GSDME)-mediated pyroptosis and the activation of cysteinyl aspartate specific proteinase (caspase)-8 was observed in AML-12 cell exposed to high glucose concentrations. We subsequently demonstrated that TNF-α can trigger caspase-8 activation, leading to GSDME-mediated cellular pyroptosis. Furthermore, treatment with ghrelin effectively suppressed hepatic cell pyroptosis induced by high glucose concentrations and provided protection against liver injury. Therefore, we propose that the TNF-α/caspase-8/caspase-3/GSDME pathway represents a novel mechanism underlying pyrodeath in DLI cells and to explore the protective role and molecular mechanisms underlying the effects of ghrelin on DLI by this special pathway, These findings may present potential therapeutic implications for the management of DLI.
Collapse
Affiliation(s)
- Jingwen Gao
- Department of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xinrui Wang
- Department of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Shengying Ye
- Department of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yixin Zhang
- Department of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yan Qin
- Department of Basic Medicine, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
5
|
Miao L, Wang H, Yang X, Xu L, Xu R, Teng H, Zhang Y, Zhao Y, Yang G, Zeng X. Methamphetamine and HIV-1 Tat Synergistically Induce Microglial Pyroptosis Via Activation of the AIM2 Inflammasome. Inflammation 2025:10.1007/s10753-025-02266-9. [PMID: 39969742 DOI: 10.1007/s10753-025-02266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Human immunodeficiency virus (HIV)-infected individuals who abuse methamphetamine (METH) exhibit more severe neurotoxicity and cognitive impairment. Pyroptosis, a programmed cell death pathway mediated by the inflammasome, has been implicated in various neurological diseases. This study aimed to elucidate the role of the AIM2 inflammasome in METH- and HIV-1 Tat-induced pyroptosis in human brain tissue and in vitro models. METHODS Postmortem brain tissue from HIV-infected individuals with a history of METH abuse was analyzed for pyroptosis markers and AIM2 inflammasome components using immunohistochemistry, immunofluorescence, and Western blotting. BV2 microglial cells were lentivirally transduced to knockdown AIM2 expression. DNA damage was assessed using Western blotting and the comet assay. Expression of pyroptosis-related proteins was evaluated by electron microscopy, Western blotting, and immunofluorescence. Cell viability was measured using the CCK8 assay. RESULTS Elevated levels of pyroptosis markers and AIM2 inflammasome components were observed in brain tissue from HIV-infected METH users. METH and Tat synergistically induced pyroptosis in BV2 cells in a time- and concentration-dependent manner, accompanied by DNA damage and activation of the AIM2 inflammasome. Knockdown of AIM2 significantly reduced the expression of pyroptosis-related proteins. CONCLUSION METH and HIV-1 Tat proteins synergistically induce microglial pyroptosis by activating the AIM2 inflammasome through dsDNA damage. These findings suggest that targeting the AIM2 inflammasome may be a promising therapeutic strategy for HIV-associated neurocognitive disorder (HAND).
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ruike Xu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yingjie Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Xu Z, Jiang Y, Shan T, Hu L, Wu M, Ji H, Li L, Yi Y, Wang H, Wang L. Study on the Effects and Mechanism of Corilagin on A2780 Cell Apoptosis. Curr Issues Mol Biol 2025; 47:105. [PMID: 39996826 PMCID: PMC11854497 DOI: 10.3390/cimb47020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Previous studies have demonstrated corilagin's inhibitory effects on the growth of various cancer cells. Given the limited research on corilagin's impact on ovarian cancer, a particularly deadly gynecological malignancy, this study aimed to investigate corilagin's influence on A2780 ovarian cancer cell apoptosis and its underlying mechanisms. The goal was to evaluate corilagin's potential as a therapeutic agent for ovarian cancer. The results of the CCK-8 assay showed that corilagin inhibited the proliferation of A2780 ovarian cancer cells while exhibiting lower toxicity to normal ovarian surface epithelial cells (IOSE-80). We found that corilagin significantly altered the A2780 cell cycle, decreasing the proportion of cells in the G0/G1 and G2/M phases and inducing cell cycle arrest in the S phase. At low concentrations, corilagin induced apoptosis in A2780 cells, accompanied by a decline in mitochondrial membrane potential and calcium influx. Transcriptome sequencing analysis identified differentially expressed apoptosis-related genes in corilagin-treated A2780 cells, primarily within the PI3K-AKT pathway. Furthermore, qPCR and Western blot results confirmed the upregulation of p53 and Bax genes and the downregulation of BCL-2. Corilagin also increased the expression of apoptotic factors caspase-9, caspase-3, PUMA, and cytochrome C, indicating its ability to induce apoptosis. Overall, corilagin effectively inhibited A2780 cell proliferation, induced cell cycle arrest, and triggered apoptosis. Its anti-tumor effect in vitro suggests its potential as a therapeutic agent for ovarian cancer A2780, especially through the PI3K/p53 pathway.
Collapse
Affiliation(s)
- Ziyang Xu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Yuhan Jiang
- College of Life and Science, Huazhong University of Science and Technology, Wuhan 430023, China;
| | - Tiantian Shan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Lei Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Minrui Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Hanxu Ji
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Longjie Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| | - Limei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Z.X.); (T.S.); (L.H.); (M.W.); (H.J.); (L.L.); (H.W.)
| |
Collapse
|
7
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
8
|
Hara MA, Ramadan M, Abdelhameid MK, Taher ES, Mohamed KO. Pyroptosis and chemical classification of pyroptotic agents. Mol Divers 2024:10.1007/s11030-024-10987-6. [PMID: 39316325 DOI: 10.1007/s11030-024-10987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.
Collapse
Affiliation(s)
- Mohammed A Hara
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt.
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University (Arish Branch), ElArich, Egypt
| |
Collapse
|
9
|
Su Q, Zhou L, Zhong G, You Y, Sun J, Wu Y, Liao J, Tang Z, Hu L. Arsenic induces hepatotoxicity in chickens via PANoptosis pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106064. [PMID: 39277381 DOI: 10.1016/j.pestbp.2024.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Environmental pollution caused by arsenic or its compounds is called arsenic pollution. Arsenic pollution mainly comes from people's mining and smelting of arsenic compounds. In addition, the widespread use of arsenic compounds, such as the use and production of arsenic-containing pesticides, is also a source of arsenic contamination. Arsenic contamination leads to an increased risk of arsenic exposure, and the multi-organ toxicity induced by arsenic exposure is a global health problem. As a non-mammalian vertebrate with high nutrient levels, chickens readily absorb and accumulate arsenic from their food. Relevant studies have shown that arsenic exposure induces hepatotoxicity in chickens, and there has been a steady stream of research into the specific mechanisms involved. PANoptosis, a newly discovered and unique mode of programmed cell death (PCD) characterized by both apoptosis, cellular pyroptosis, and necroptosis. There are no studies to indicate whether chicken liver toxicity due to arsenic is associated with PANoptosis. Therefore, we established chicken animal models and chicken primary hepatocyte models exposed to different arsenic concentrations to dissect the role and mechanism of PANoptosis in arsenic exposure-induced hepatotoxicity in chickens. Our histopathological results showed that arsenic treatment caused dose-dependent damage to chicken liver structure. Meanwhile, different doses of arsenic treatment groups caused significant up-regulation of the protein level of ZBP1, a key factor of PANoptosis. And then consequently triggered the abnormal gene and protein expression levels of apoptosis-associated factors (Caspase-8, Caspase-7, Caspase-3), cellular pyroptosis-associated factors (NLRP3, ASC, GSDMD) and necroptosis-associated factors (RIPK1, RIPK3, MLKL). In conclusion, our study revealed that PANoptosis is involved in arsenic-induced chicken hepatotoxicity. Our findings provide a new perspective on the pathogenesis of arsenic exposure-induced hepatotoxicity in chickens.
Collapse
Affiliation(s)
- Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Limeng Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yanli You
- College of Life Science, Yantai University, Yantai City 264005, Shandong Province, China.
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Hu L, Cheng Z, Chu H, Wang W, Jin Y, Yang L. TRIF-dependent signaling and its role in liver diseases. Front Cell Dev Biol 2024; 12:1370042. [PMID: 38694821 PMCID: PMC11061444 DOI: 10.3389/fcell.2024.1370042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
TIR domain-containing adaptor inducing IFN-β (TRIF) is a crucial adaptor molecule downstream of toll-like receptors 3 (TLR3) and 4 (TLR4). TRIF directly binds to TLR3 through its TIR domain, while it associates with TLR4 indirectly through the bridge adaptor molecule TRIF-related adaptor molecule (TRAM). TRIF plays a pivotal role in regulating interferon beta 1 (IFN-β) response, nuclear factor kappa B (NF-κB) signaling, apoptosis, and necroptosis signaling mediated by TLR3 and TLR4. It accomplishes these by recruiting and activating various kinases or transcription factors via its distinct domains. In this review, we comprehensively summarize the TRIF-dependent signaling pathways mediated by TLR3 and TLR4, elucidating key target molecules and downstream pathways. Furthermore, we provide an overview of TRIF's impact on several liver disorders, including drug-induced liver injury, ischemia-reperfusion liver injury, autoimmune hepatitis, viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). We also explore its effects on liver steatosis, inflammation, fibrosis, and carcinogenesis. A comprehensive understanding of the TRIF-dependent signaling pathways, as well as the intricate relationship between TRIF and liver diseases, can facilitate the identification of potential drug targets and the development of novel and effective therapeutics against hepatic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Elmetwalli A, Abdel-Monem MO, El-Far AH, Ghaith GS, Albalawi NAN, Hassan J, Ismail NF, El-Sewedy T, Alnamshan MM, ALaqeel NK, Al-Dhuayan IS, Hassan MG. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med Oncol 2024; 41:106. [PMID: 38575697 PMCID: PMC10995097 DOI: 10.1007/s12032-024-02330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Gehad S Ghaith
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mashael Mashal Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf K ALaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ibtesam S Al-Dhuayan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
13
|
Shalaby NE, Shoheib ZS, Yassin NA, El-Kaliny HH, Hasby Saad MA. Pyroptosis Tuning in Intestinal Cryptosporidiosis via the Natural Histone Deacetylase Inhibitor Romidepsin. Parasite Immunol 2024; 46:e13032. [PMID: 38497997 DOI: 10.1111/pim.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Cryptosporidium is an opportunistic protozoan, with many species of cross-human infectivity. It causes life-threatening diarrhoea in children and CD4-defective patients. Despite its limited efficacy, nitazoxanide remains the primary anti-cryptosporidial drug. Cryptosporidium infects the intestinal brush border (intracellular-extracytoplasmic) and down-regulates pyroptosis to prevent expulsion. Romidepsin is a natural histone deacetylase inhibitor that triggers pyroptosis. Romidepsin's effect on cryptosporidiosis was assessed in immunocompromised mice via gasdermin-D (GSDM-D) immunohistochemical expression, IFN-γ, IL-1β and IL-18 blood levels by ELISA, and via parasite scanning by modified Ziehl-Neelsen staining and scanning electron microscopy (SEM). Oocyst deformity and local cytokines were also assessed in ex vivo ileal explants. Following intraperitoneal injection of romidepsin, oocyst shedding significantly reduced at the 9th, 12th and 15th d.p.i. compared with infected-control and drug-control (nitazoxanide-treated) mice. H&E staining of intestinal sections from romidepsin-treated mice showed significantly low intestinal scoring with marked reduction in epithelial hyperplasia, villous blunting and cellular infiltrate. SEM revealed marked oocyst blebbing and paucity (in vivo and ex vivo) after romidepsin compared with nitazoxanide. Regarding pyroptosis, romidepsin triggered significantly higher intestinal GSDM-D expression in vivo, and higher serum/culture IFN-γ, IL-1β and IL-18 levels in romidepsin-treated mice than in the control groups. Collectively, in cryptosporidiosis, romidepsin succeeded in enhancing pyroptosis in the oocysts and infected epithelium, reducing infection and shifting the brush border towards normalisation.
Collapse
Affiliation(s)
- Noha E Shalaby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Zeinab S Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A Yassin
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba H El-Kaliny
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Anatomy and Histology Department, Mutah University, Mutah, Jordan
| | - Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Yang L, Liao W, Dong J, Chen X, Huang L, Yang W, Jiang S. Zearalenone Promotes Uterine Hypertrophy through AMPK/mTOR Mediated Autophagy. Toxins (Basel) 2024; 16:73. [PMID: 38393151 PMCID: PMC10892946 DOI: 10.3390/toxins16020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN), a non-steroidal Fusarium graminearum with an estrogen effect, can cause damage to the gastrointestinal tract, immune organs, liver, and reproductive system. Further analysis of the mechanism of ZEN has become an important scientific issue. We have established in vivo and in vitro models of ZEN intervention, used AMPK/mTOR as a targeted pathway for ZEN reproductive toxicity, and explored the molecular mechanism by which ZEN may induce uterine hypertrophy in weaned piglets. Our study strongly suggested that ZEN can activate the phosphorylation of AMPK in uterine endometrial epithelium cells, affect the phosphorylation level of mTOR through TSC2 and Rheb, induce autophagy, upregulate the expression of proliferative genes PCNA and BCL2, downregulate the expression of apoptotic gene BAX, promote uterine endometrial epithelium cells proliferation, and ultimately lead to thickening of the endometrial and myometrium, increased density of uterine glands, and induce uterine hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.Y.); (W.L.); (J.D.); (X.C.); (L.H.); (W.Y.)
| |
Collapse
|