1
|
McCulloch E, Vasseur R, Gopalakrishnan S. Ballistic modes as a source of anomalous charge noise. Phys Rev E 2025; 111:015410. [PMID: 39972727 DOI: 10.1103/physreve.111.015410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025]
Abstract
Steady-state currents generically occur both in systems with continuous translation invariance and in nonequilibrium settings with particle drift. In either case, thermal fluctuations advected by the current act as a source of noise for slower hydrodynamic modes. This noise is unconventional, since it is highly correlated along spacetime rays. We argue that, in quasi-one-dimensional geometries, the correlated noise from ballistic modes generically gives rise to anomalous full counting statistics (FCS) for diffusively spreading charges. We present numerical evidence for anomalous FCS in two settings: (1) a two-component continuum fluid and (2) the totally asymmetric exclusion process initialized in a nonequilibrium state.
Collapse
Affiliation(s)
- Ewan McCulloch
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
- University of Massachusetts, Amherst, Department of Physics, Massachusetts 01003, USA
| | - Romain Vasseur
- University of Geneva, Department of Theoretical Physics, 24 quai Ernest-Ansermet, 1211 Genève, Switzerland
- University of Massachusetts, Amherst, Department of Physics, Massachusetts 01003, USA
| | - Sarang Gopalakrishnan
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Gopalakrishnan S, McCulloch E, Vasseur R. Non-Gaussian diffusive fluctuations in Dirac fluids. Proc Natl Acad Sci U S A 2024; 121:e2403327121. [PMID: 39630864 DOI: 10.1073/pnas.2403327121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Dirac fluids-interacting systems obeying particle-hole symmetry and Lorentz invariance-are among the simplest hydrodynamic systems; they have also been studied as effective descriptions of transport in strongly interacting Dirac semimetals. Direct experimental signatures of the Dirac fluid are elusive, as its charge transport is diffusive as in conventional metals. In this paper, we point out a striking consequence of fluctuating relativistic hydrodynamics: The full counting statistics (FCS) of charge transport is highly non-Gaussian. We predict the exact asymptotic form of the FCS, which generalizes a result previously derived for certain interacting integrable systems. A consequence is that, starting from quasi-one-dimensional nonequilibrium initial conditions, charge noise in the hydrodynamic regime is parametrically enhanced relative to that in conventional diffusive metals.
Collapse
Affiliation(s)
- Sarang Gopalakrishnan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544
| | - Ewan McCulloch
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Romain Vasseur
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
3
|
Yoon TJ, Bell IH. Linking excess entropy and acentric factor in spherical fluids. J Chem Phys 2024; 161:104301. [PMID: 39248233 DOI: 10.1063/5.0216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Introduced by Pitzer in 1955, the acentric factor (ω) has been used to evaluate a molecule's deviation from the corresponding state principle. Pitzer devised ω based on a concept called perfect liquid (or centric fluid), a hypothetical species perfectly adhering to this principle. However, its physical significance remains unclear. This work attempts to clarify the centric fluid from an excess entropy perspective. We observe that the excess entropy per particle of centric fluids approximates -kB at their critical points, akin to the communal entropy of an ideal gas in classical cell theory. We devise an excess entropy dissection and apply it to model fluids (square-well, Lennard-Jones, Mie n-6, and the two-body ab initio models) to interpret this similarity. The dissection method identifies both centricity-independent and centricity-dependent entropic features. Regardless of the acentric factor, the attractive interaction contribution to the excess entropy peaks at the density where local density is most enhanced due to the competition between the local attraction and critical fluctuations. However, only in centric fluids does the entropic contribution from the local attractive potential become comparable to that of the hard sphere exclusion, making the centric fluid more structured than acentric ones. These findings elucidate the physical significance of the centric fluid as a system of particles where the repulsive and attractive contributions to the excess entropy become equal at its gas-liquid criticality. We expect these findings to offer a way to find suitable intermolecular potentials and assess the physical adequacy of equations of state.
Collapse
Affiliation(s)
- Tae Jun Yoon
- School of Transdisciplinary Innovations, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
4
|
Castagnède A, Filion L, Smallenburg F. Fast event-driven simulations for soft spheres: from dynamics to Laves phase nucleation. J Chem Phys 2024; 161:024116. [PMID: 38995079 DOI: 10.1063/5.0209178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional molecular dynamics (MD) simulations struggle when simulating particles with steeply varying interaction potentials due to the need to use a very short time step. Here, we demonstrate that an event-driven Monte Carlo (EDMC) approach was first introduced by Peters and de With [Phys. Rev. E 85, 026703 (2012)] and represents an excellent substitute for MD in the canonical ensemble. In addition to correctly reproducing the static thermodynamic properties of the system, the EDMC method closely mimics the dynamics of systems of particles interacting via the steeply repulsive Weeks-Chandler-Andersen (WCA) potential. In comparison to time-driven MD simulations, EDMC runs faster by over an order of magnitude at sufficiently low temperatures. Moreover, the lack of a finite time step in EDMC circumvents the need to trade accuracy against the simulation speed associated with the choice of time step in MD. We showcase the usefulness of this model to explore the phase behavior of the WCA model at extremely low temperatures and to demonstrate that spontaneous nucleation and growth of the Laves phases are possible at temperatures significantly lower than previously reported.
Collapse
Affiliation(s)
- Antoine Castagnède
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laura Filion
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
5
|
Pieprzyk S, Brańka AC, Heyes DM, Bannerman MN. Revised Enskog theory and molecular dynamics simulations of the viscosities and thermal conductivity of the hard-sphere fluid and crystal. Phys Rev E 2024; 109:054119. [PMID: 38907429 DOI: 10.1103/physreve.109.054119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 06/24/2024]
Abstract
Hard-sphere (HS) shear, longitudinal, cross, and bulk viscosities and the thermal conductivity are obtained by molecular dynamics (MD) simulations, covering the entire density range from the dilute fluid to the solid crystal near close-packing. The transport coefficient data for the HS crystal are largely new and display, unlike for the fluid, a surprisingly simple behavior in that they can be represented well by a simple function of the density compressibility factor. In contrast to the other four transport coefficients (which diverge), the bulk viscosity in the solid is quite small and decreases rapidly with increasing density, tending to zero in the close-packed limit. The so-called cross viscosity exhibits a different behavior to the other viscosities, in being negative over the entire solid range, and changes sign from negative to positive on increasing the density in the fluid phase. The extent to which the viscosity tensor and thermal conductivity of the HS crystal can be represented by revised Enskog theory (RET) is investigated. The RET expressions are sums of an instantaneous (I), a kinetic (K), and a so-called α part. The I part of the transport coefficients evaluated directly by MD are statistically indistinguishable from those of the corresponding kinetic theory (Enskog and RET) expressions. For the K part the integral over the spatial two-particle distribution function at contact was determined and the α part was estimated using the direct correlation function and density functional theory approximations. All three parts were determined in this work which allowed the accuracy of RET for solid systems to be assessed rigorously. It is found that in the case of the thermal conductivity the predictions of RET are in excellent agreement with the MD results. Also, for the shear viscosity the agreement over the entire solid phase is quite good but is considerably worse for the three remaining viscosities in the solid phase.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Arkadiusz C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - David M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Marcus N Bannerman
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
6
|
Paterson T, Bannerman MN, Lue L. Using the Zeno line to assess and refine molecular models. J Chem Phys 2024; 160:154503. [PMID: 38624125 DOI: 10.1063/5.0192770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
The Zeno line is the locus of points on the temperature-density plane where the compressibility factor of the fluid is equal to one. It has been observed to be straight for a broad variety of real fluids, although the underlying reasons for this are still unclear. In this work, a detailed study of the Zeno line and its relation to the vapor-liquid coexistence curve is performed for two simple model pair-potential fluids: attractive square-well fluids with varying well-widths λ and Mie n-6 fluids with different repulsive exponents n. Interestingly, the Zeno lines of these fluids are curved, regardless of the value of λ or n. We find that for square-well fluids, λ ≈ 1.8 presents a Zeno line, which is the most linear over the largest temperature range. For Mie n-6 fluids, we find that the straightest Zeno line occurs for n between 8 and 10. Additionally, the square-well and Mie fluids with the straightest Zeno line showed the closest quantitative agreement with the vapor-liquid coexistence curve for experimental fluids that follow the principle of corresponding states (e.g., argon, xenon, krypton, methane, nitrogen, and oxygen). These results suggest that the Zeno line can provide a useful additional feature, in complement to other properties, such as the phase envelope, to evaluate molecular models.
Collapse
Affiliation(s)
- Thomas Paterson
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Marcus N Bannerman
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| |
Collapse
|
7
|
Zhang H, Zhang Q, Liu F, Han Y. Anisotropic-Isotropic Transition of Cages at the Glass Transition. PHYSICAL REVIEW LETTERS 2024; 132:078201. [PMID: 38427876 DOI: 10.1103/physrevlett.132.078201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Characterizing the local structural evolution is an essential step in understanding the nature of glass transition. In this work, we probe the evolution of Voronoi cell geometry in simple glass models by simulations and colloid experiments, and find that the individual particle cages deform anisotropically in supercooled liquid and isotropically in glass. We introduce an anisotropy parameter k for each Voronoi cell, whose mean value exhibits a sharp change at the mode-coupling glass transition ϕ_{c}. Moreover, a power law of packing fraction ϕ∝q_{1}^{d} is discovered in the supercooled liquid regime with d>D, in contrast to d=D in the glass regime, where q_{1} is the first peak position of structure factor, and D is the space dimension. This power law is qualitatively explained by the change of k. The active motions in supercooled liquid are spatially correlated with long axes rather than short axes of Voronoi cells. In addition, the dynamic slowing down approaching the glass transition can be well characterized through a modified free-volume model based on k. These findings reveal that the structural parameter k is effective in identifying the structure-dynamics correlations and the glass transition in these systems.
Collapse
Affiliation(s)
- Huijun Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
9
|
Jung G, Franosch T. Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids. Phys Rev E 2023; 107:054101. [PMID: 37328986 DOI: 10.1103/physreve.107.054101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
We present mode-coupling theory (MCT) results for densely packed hard-sphere fluids confined between two parallel walls and compare them quantitatively to computer simulations. The numerical solution of MCT is calculated using the full system of matrix-valued integro-differential equations. We investigate several dynamical properties of supercooled liquids including scattering functions, frequency-dependent susceptibilities, and mean-square displacements. Close to the glass transition, we find quantitative agreement between the coherent scattering function predicted from theory and that evaluated from simulations, which enables us to make quantitative statements on caging and relaxation dynamics of the confined hard-sphere fluid.
Collapse
Affiliation(s)
- Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Pruteanu CG, Bannerman MN, Kirsz M, Lue L, Ackland GJ. From Atoms to Colloids: Does the Frenkel Line Exist in Discontinuous Potentials? ACS OMEGA 2023; 8:12144-12153. [PMID: 37033816 PMCID: PMC10077443 DOI: 10.1021/acsomega.2c08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The Frenkel line has been proposed as a crossover in the fluid region of phase diagrams between a "nonrigid" and a "rigid" fluid. It is generally described as a crossover in the dynamical properties of a material and as such has been described theoretically using a very different set of markers from those with which is it investigated experimentally. In this study, we have performed extensive calculations using two simple yet fundamentally different model systems: hard spheres and square-well potentials. The former has only hardcore repulsion, while the latter also includes a simple model of attraction. We computed and analyzed a series of physical properties used previously in simulations and experimental measurements and discuss critically their correlations and validity as to being able to uniquely and coherently locate the Frenkel line in discontinuous potentials.
Collapse
Affiliation(s)
- Ciprian G. Pruteanu
- SUPA,
School of Physics and Astronomy and Centre for Science at Extreme
Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Marcus N. Bannerman
- School
of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Marcin Kirsz
- SUPA,
School of Physics and Astronomy and Centre for Science at Extreme
Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Leo Lue
- Department
of Chemical and Process Engineering, University
of Strathclyde, James
Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United
Kingdom
| | - Graeme J. Ackland
- SUPA,
School of Physics and Astronomy and Centre for Science at Extreme
Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
11
|
Roberts RC, Palmer JC, Conrad JC. Long-Wavelength Fluctuations in Quasi-2D Supercooled Liquids. J Phys Chem B 2023; 127:961-969. [PMID: 36656297 DOI: 10.1021/acs.jpcb.2c07417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We use molecular simulation to characterize the dynamics of supercooled liquids confined in quasi-2D slit geometries. Similar to bulk supercooled liquids, the confined systems exhibit subdiffusive dynamics on intermediate time scales arising from particle localization inside their neighbor cages, followed by an eventual crossover to diffusive behavior as cage rearrangement occurs. The quasi-2D confined liquids also exhibit signatures of long-wavelength fluctuations (LWFs) in the lateral directions parallel to the confining walls, reminiscent of the collective displacements observed in 2D but not 3D systems. The magnitude of the LWFs increases with the lateral dimensions of systems with the same particle volume fraction and confinement length scale, consistent with the logarithmic scaling predicted for 2D Mermin-Wagner fluctuations. The amplitude of the fluctuations is a nonmonotonic function of the confinement length scale because of a competition between caging and strengthening LWFs upon approaching the 2D limit. Our findings suggest that LWFs may play an important role in understanding the behavior of confined supercooled liquids due to their prevalence over a surprisingly broad range of particle densities and confinement length scales.
Collapse
Affiliation(s)
- Ryan C Roberts
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| |
Collapse
|
12
|
Li B, Nishikawa Y, Höllmer P, Carillo L, Maggs AC, Krauth W. Hard-disk pressure computations-a historic perspective. J Chem Phys 2022; 157:234111. [PMID: 36550024 DOI: 10.1063/5.0126437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We discuss pressure computations for the hard-disk model performed since 1953 and compare them to the results that we obtain with a powerful event-chain Monte Carlo and a massively parallel Metropolis algorithm. Like other simple models in the sciences, such as the Drosophila model of biology, the hard-disk model has needed monumental efforts to be understood. In particular, we argue that the difficulty of estimating the pressure has not been fully realized in the decades-long controversy over the hard-disk phase-transition scenario. We present the physics of the hard-disk model, the definition of the pressure and its unbiased estimators, several of which are new. We further treat different sampling algorithms and crucial criteria for bounding mixing times in the absence of analytical predictions. Our definite results for the pressure, for up to one million disks, may serve as benchmarks for future sampling algorithms. A synopsis of hard-disk pressure data as well as different versions of the sampling algorithms and pressure estimators are made available in an open-source repository.
Collapse
Affiliation(s)
- Botao Li
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Paris, France
| | - Yoshihiko Nishikawa
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Philipp Höllmer
- Physikalisches Institut and Bethe Center for Theoretical Physics, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| | - Louis Carillo
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Paris, France
| | - A C Maggs
- CNRS Gulliver, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| | - Werner Krauth
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Paris, France
| |
Collapse
|
13
|
Luo C, Robinson JF, Pihlajamaa I, Debets VE, Royall CP, Janssen LMC. Many-Body Correlations Are Non-negligible in Both Fragile and Strong Glassformers. PHYSICAL REVIEW LETTERS 2022; 129:145501. [PMID: 36240416 DOI: 10.1103/physrevlett.129.145501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
It is widely believed that the emergence of slow glassy dynamics is encoded in a material's microstructure. First-principles theory [mode-coupling theory (MCT)] is able to predict the dramatic slowdown of the dynamics from only static two-point correlations as input, yet it cannot capture all of the observed dynamical behavior. Here we go beyond two-point spatial correlation functions by extending MCT systematically to include higher-order static and dynamic correlations. We demonstrate that only adding the static triplet direct correlations already qualitatively changes the predicted glass-transition diagram of binary hard spheres and silica. Moreover, we find a nontrivial competition between static triplet correlations that work to stabilize the glass state and dynamic higher-order correlations that destabilize it for both materials. We conclude that the conventionally neglected static triplet direct correlations as well as higher-order dynamic correlations are, in fact, non-negligible in both fragile and strong glassformers.
Collapse
Affiliation(s)
- Chengjie Luo
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Joshua F Robinson
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Ilian Pihlajamaa
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Vincent E Debets
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
14
|
Heyes DM, Pieprzyk S, Brańka AC. Bulk viscosity of hard sphere fluids by equilibrium and nonequilibrium molecular dynamics simulations. J Chem Phys 2022; 157:114502. [PMID: 36137779 DOI: 10.1063/5.0101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulk viscosity, ηb, of the hard sphere (HS) fluid is computed by equilibrium and nonequilibrium molecular dynamics (NEMD) simulations, the latter using an adaptation of the time-stepping method for continuous potential systems invented by Hoover et al. [Phys. Rev. A 21, 1756 (1980)], which employs an imposed cyclic density variation on the system by affine scaling of the particle coordinates. The time-stepping method employed for HS is validated against exact event-driven hard sphere methodology for a series of equilibrium quantities over a wide density range, including the pressure, singular parts of the hard sphere viscosities, and the nonsingular parts of the shear viscosity time correlation functions. The time steps used are typically only a little smaller than those employed in continuous potential simulations. Exact pressure tensor fluctuation expressions are derived for the singular (or infinite limiting frequency) equilibrium parts of the viscosities, which were employed in the simulations. The values obtained agree well with the predictions of the Enskog theory for all densities considered. The bulk viscosity obtained by NEMD is shown to be noticeably frequency dependent for densities in excess of ∼0.8, decaying approximately exponentially to the Enskog and equilibrium simulation values at all densities considered for frequencies in excess of ∼5 in hard sphere units. Temperature profiles during the cycle and the effects of strain amplitude on the computed frequency dependent bulk viscosity are presented. The bulk viscosity increases with the maximum density amplitude.
Collapse
Affiliation(s)
- D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
15
|
MacKinnon J, Bannerman MN, Lue L. Tethered hard spheres: A bridge between the fluid and solid phases. J Chem Phys 2022; 157:114501. [DOI: 10.1063/5.0101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermodynamics of hard spheres tethered to a Face-Centered Cubic (FCC) lattice is investigated using event-driven molecular-dynamics. The particle-particle and the particle-tether collision rates are related to the phase space geometry and are used to study the FCC and fluid states. In tethered systems, the entropy can be determined by at least two routes: (i) through integration of the tether collision rates with the tether length $r_T$ or (ii) through integration of the particle-particle collision rates with the hard-sphere diameter $\sigma$ (or, equivalently, the density). If the entropy were an entirely analytic function of $r_T$ and $\sigma$, these two methods for calculating the entropy should lead to the same results; however, a non-analytic region exists as an extension of the solid-fluid phase transition of the untethered hard-sphere system, and integration paths that cross this region will lead to values for the entropy that depend on the particular path chosen. The difference between the calculated entropies appears to be related to the communal entropy, and the location of the non-analytic region appears to be related to conditions where the regions of phase space associated with the FCC configuration become separated from those associated with the disordered fluid. The non-analytic region is finite in extent, vanishing below $r_T/a\approx0.55$, where $a$ is the lattice spacing, and there are many continuous paths that connect the fluid and solid phases that can be used to determine the crystal free energy with respect to the fluid.
Collapse
Affiliation(s)
- James MacKinnon
- Chemical Engineering, University of Strathclyde, United Kingdom
| | | | - Leo Lue
- Department of Chemical Engineering, University of Strathclyde, United Kingdom
| |
Collapse
|
16
|
Jung G, Franosch T. Structural properties of liquids in extreme confinement. Phys Rev E 2022; 106:014614. [PMID: 35974617 DOI: 10.1103/physreve.106.014614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
We simulate a hard-sphere liquid in confined geometry where the separation of the two parallel, hard walls is smaller than two particle diameters. By systematically reducing the wall separation we analyze the behavior of structural and thermodynamic properties, such as inhomogeneous density profiles, structure factors, and compressibilities when approaching the two-dimensional limit. In agreement with asymptotic predictions, we find for quasi-two-dimensional fluids that the density profile becomes parabolic and the structure factor converges toward its two-dimensional counterpart. To extract the compressibility in polydisperse samples a perturbative expression is used which qualitatively influences the observed nonmonotonic dependence of the compressibility with wall separation. We also present theoretical calculations based on fundamental-measure theory and integral-equation theory, which are in very good agreement with the simulation results.
Collapse
Affiliation(s)
- Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck, Austria
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Mei B, Zhuang B, Lu Y, An L, Wang ZG. Local-Average Free Volume Correlates with Dynamics in Glass Formers. J Phys Chem Lett 2022; 13:3957-3964. [PMID: 35481369 DOI: 10.1021/acs.jpclett.2c00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glass formers exhibit a pronounced slowdown in dynamics, accompanied by progressive heterogeneity as they approach the glass transition. There is intense debate over whether the dramatic slowdown is caused by dynamical heterogeneity and whether the enhanced dynamical heterogeneity originates from structural causes. However, the connection between dynamical heterogeneity and the spatial distribution of the single-particle free volume (a purely static structural quantity) was found to be rather weak, which raises the question of whether dynamic heterogeneity has a purely structural origin. Here, by introducing the concept of local-average free volume, we present numerical evidence that long-time dynamic heterogeneity shows significantly enhanced correlation with the average local free volume over a length scale of a few neighboring shells. Our results resolve the long-standing controversy about whether free volume plays an important role in particle rearrangements associated with the activated hopping relaxation. The concept of "local average" can be applied to other local structural descriptors to better correlate with dynamic heterogeneity in glass-forming liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Smallenburg F. Efficient event-driven simulations of hard spheres. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:22. [PMID: 35274181 DOI: 10.1140/epje/s10189-022-00180-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Hard spheres are arguably one of the most fundamental model systems in soft matter physics, and hence a common topic of simulation studies. Event-driven simulation methods provide an efficient method for studying the phase behavior and dynamics of hard spheres under a wide range of different conditions. Here, we examine the impact of several optimization strategies for speeding up event-driven molecular dynamics of hard spheres and present a light-weight simulation code that outperforms existing simulation codes over a large range of system sizes and packing fractions. The presented differences in simulation speed, typically a factor of five to ten, save significantly on both CPU time and energy consumption and may be a crucial factor for studying slow processes such as crystal nucleation and glassy dynamics.
Collapse
Affiliation(s)
- Frank Smallenburg
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
19
|
Pieprzyk S, Yuste SB, Santos A, de Haro ML, Brańka AC. Structural properties of additive binary hard-sphere mixtures. III. Direct correlation functions. Phys Rev E 2021; 104:054142. [PMID: 34942716 DOI: 10.1103/physreve.104.054142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/07/2022]
Abstract
An analysis of the direct correlation functions c_{ij}(r) of binary additive hard-sphere mixtures of diameters σ_{s} and σ_{b} (where the subscripts s and b refer to the "small" and "big" spheres, respectively), as obtained with the rational-function approximation method and the WM scheme introduced in previous work [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)2470-004510.1103/PhysRevE.101.012117], is performed. The results indicate that the functions c_{ss}(r<σ_{s}) and c_{bb}(r<σ_{b}) in both approaches are monotonic and can be well represented by a low-order polynomial, while the function c_{sb}(r<1/2(σ_{b}+σ_{s})) is not monotonic and exhibits a well-defined minimum near r=1/2(σ_{b}-σ_{s}), whose properties are studied in detail. Additionally, we show that the second derivative c_{sb}^{''}(r) presents a jump discontinuity at r=1/2(σ_{b}-σ_{s}) whose magnitude satisfies the same relationship with the contact values of the radial distribution function as in the Percus-Yevick theory.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Santos B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz, E-06006, Spain
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz, E-06006, Spain
| | - Mariano López de Haro
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (U.N.A.M.), Temixco, Morelos 62580, Mexico
| | - Arkadiusz C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
20
|
Lue L, Bishop M, Whitlock PA. Molecular dynamics study of six-dimensional hard hypersphere crystals. J Chem Phys 2021; 155:144502. [PMID: 34654305 DOI: 10.1063/5.0066421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Six-dimensional hard hypersphere systems in the A6, D6, and E6 crystalline phases have been studied using event-driven molecular dynamics simulations in periodic, skew cells that reflect the underlying lattices. In all the simulations, the systems had sufficient numbers of hyperspheres to capture the first coordination shells, and the larger simulations also included the complete second coordination shell. The equations of state, for densities spanning the fluid, metastable fluid, and solid regimes, were determined. Using molecular dynamics simulations with the hyperspheres tethered to lattice sites allowed the computation of the free energy for each of the crystal lattices relative to the fluid phase. From these free energies, the fluid-crystal coexistence region was determined for the E6, D6, and A6 lattices. Pair correlation functions for all the examined states were computed. Interestingly, for all the states examined, the pair correlation functions displayed neither a split second peak nor a shoulder in the second peak. These behaviors have been previously used as a signature of the freezing of the fluid phase for hard hyperspheres in two to five dimensions.
Collapse
Affiliation(s)
- Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G11XJ, United Kingdom
| | - Marvin Bishop
- Department of Mathematics, Manhattan College, Manhattan College Parkway, Riverdale, New York, New York 10471, USA
| | - Paula A Whitlock
- Department of Computer and Information Sciences, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, New York 11210, USA
| |
Collapse
|
21
|
Pieprzyk S, Yuste SB, Santos A, de Haro ML, Brańka AC. Structural properties of additive binary hard-sphere mixtures. II. Asymptotic behavior and structural crossovers. Phys Rev E 2021; 104:024128. [PMID: 34525547 DOI: 10.1103/physreve.104.024128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous paper [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]2470-004510.1103/PhysRevE.101.012117. The so-called rational-function approximation method and an approach combining accurate molecular dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation are considered. The density, composition, and size-ratio dependencies of the leading poles of the Fourier transforms of the total correlation functions h_{ij}(r) of such mixtures are presented, those poles accounting for the asymptotic decay of h_{ij}(r) for large r. Structural crossovers, in which the asymptotic wavelength of the oscillations of the total correlation functions changes discontinuously, are investigated. The behavior of the structural crossover lines as the size ratio and densities of the two species are changed is also discussed.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Santos B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - Mariano López de Haro
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (U.N.A.M.), Temixco, Morelos 62580, Mexico
| | - Arkadiusz C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
22
|
Moir C, Lue L, Bannerman MN. Tethered-particle model: The calculation of free energies for hard-sphere systems. J Chem Phys 2021; 155:064504. [PMID: 34391346 DOI: 10.1063/5.0058892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two methods for computing the entropy of hard-sphere systems using a spherical tether model are explored, which allow the efficient use of event-driven molecular-dynamics simulations. An intuitive derivation is given, which relates the rate of particle collisions, either between two particles or between a particle and its respective tether, to an associated hypersurface area, which bounds the system's accessible configurational phase space. Integrating the particle-particle collision rates with respect to the sphere diameter (or, equivalently, density) or the particle-tether collision rates with respect to the tether length then directly determines the volume of accessible phase space and, therefore, the system entropy. The approach is general and can be used for any system composed of particles interacting with discrete potentials in fluid, solid, or glassy states. The entropies calculated for the liquid and crystalline hard-sphere states using these methods are found to agree closely with the current best estimates in the literature, demonstrating the accuracy of the approach.
Collapse
Affiliation(s)
- Craig Moir
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Marcus N Bannerman
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
23
|
Megías A, Santos A. Relative entropy of freely cooling granular gases. A molecular dynamics study. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Whereas the original Boltzmann’s H-theorem applies to elastic collisions, its rigorous generalization to the inelastic case is still lacking. Nonetheless, it has been conjectured in the literature that the relative entropy of the velocity distribution function with respect to the homogeneous cooling state (HCS) represents an adequate nonequilibrium entropy-like functional for an isolated freely cooling granular gas. In this work, we present molecular dynamics results reinforcing this conjecture and rejecting the choice of the Maxwellian over the HCS as a reference distribution. These results are qualitatively predicted by a simplified theoretical toy model. Additionally, a Maxwell-demon-like velocity-inversion simulation experiment highlights the microscopic irreversibility of the granular gas dynamics, monitored by the relative entropy, where a short “anti-kinetic” transient regime appears for nearly elastic collisions only.
Collapse
|
24
|
Alexandrou C, Harmandaris V, Irakleous A, Koutsou G, Savva N. Modeling the evolution of COVID-19 via compartmental and particle-based approaches: Application to the Cyprus case. PLoS One 2021; 16:e0250709. [PMID: 33956838 PMCID: PMC8101925 DOI: 10.1371/journal.pone.0250709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/13/2021] [Indexed: 01/21/2023] Open
Abstract
We present two different approaches for modeling the spread of the COVID-19 pandemic. Both approaches are based on the population classes susceptible, exposed, infectious, quarantined, and recovered and allow for an arbitrary number of subgroups with different infection rates and different levels of testing. The first model is derived from a set of ordinary differential equations that incorporates the rates at which population transitions take place among classes. The other is a particle model, which is a specific case of crowd simulation model, in which the disease is transmitted through particle collisions and infection rates are varied by adjusting the particle velocities. The parameters of these two models are tuned using information on COVID-19 from the literature and country-specific data, including the effect of restrictions as they were imposed and lifted. We demonstrate the applicability of both models using data from Cyprus, for which we find that both models yield very similar results, giving confidence in the predictions.
Collapse
Affiliation(s)
- Constantia Alexandrou
- Department of Physics, University of Cyprus, Nicosia, Cyprus
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Vangelis Harmandaris
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
- Institute of Applied and Computational Mathematics, Heraklion, Greece
| | - Anastasios Irakleous
- Department of Physics, University of Cyprus, Nicosia, Cyprus
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Giannis Koutsou
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Nikos Savva
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
25
|
Megías A, Santos A. Kullback-Leibler Divergence of a Freely Cooling Granular Gas. ENTROPY 2020; 22:e22111308. [PMID: 33287073 PMCID: PMC7712072 DOI: 10.3390/e22111308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Finding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original H-theorem hypotheses do not fit here and the H-functional presents some additional measure problems that are solved by the Kullback–Leibler divergence (KLD) of a reference velocity distribution function from the actual distribution. The right choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov functional, the asymptotic “homogeneous cooling state” (HCS) distribution being a potential candidate. Due to the lack of a formal proof far from the quasielastic limit, the aim of this work is to support this conjecture aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values for the coefficient of restitution (α) and for different initial conditions. Our results reject the Maxwellian distribution as a possible reference, whereas they reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on using the former rather than the latter, revealing a non-monotonic dependence with α.
Collapse
Affiliation(s)
- Alberto Megías
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain;
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-651
| |
Collapse
|
26
|
Schindler T, Rohwer CM. Ballistic propagation of density correlations and excess wall forces in quenched granular media. Phys Rev E 2020; 102:052901. [PMID: 33327181 DOI: 10.1103/physreve.102.052901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/18/2020] [Indexed: 11/07/2022]
Abstract
We investigate a granular gas in a shaken quasi-two-dimensional box in molecular dynamics computer simulations. After a sudden change (quench) of the shaking amplitude, transient density correlations are observed orders of magnitude beyond the steady-state correlation length scale. Propagation of the correlations is ballistic, in contrast to recently investigated quenches of Brownian particles that show diffusive propagation [Rohwer et al., Phys. Rev. Lett. 118, 015702 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.015702, Rohwer et al., Phys. Rev. E 97, 032125 (2018)2470-004510.1103/PhysRevE.97.032125]. At sufficiently strong cooling of the fluid the effect is overlaid by clustering instability of the homogeneous cooling state with different scaling behavior. We are able to identify different quench regimes. In each regime correlations exhibit remarkably universal position dependence. In simulations performed with side walls we find confinement effects for temperature and pressure in steady-state simulations and an additional transient wall pressure contribution when changing the shaking amplitude. The transient contribution is ascribed to enhanced relaxation of the fluid in the presence of walls. From incompatible scaling behavior we conclude that the observed effects with and without side walls constitute distinct phenomena.
Collapse
Affiliation(s)
- Thomas Schindler
- Theoretische Physik 1, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian M Rohwer
- Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, Cape Town, South Africa; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany; and 4th Institute for Theoretical Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Potential energy surface of interaction of two diatomic molecules for air flows simulation at intermediate temperatures. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Jung G, Caraglio M, Schrack L, Franosch T. Dynamical properties of densely packed confined hard-sphere fluids. Phys Rev E 2020; 102:012612. [PMID: 32795038 DOI: 10.1103/physreve.102.012612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 11/07/2022]
Abstract
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations. We corroborate that the data converge in the β-scaling regime to two asymptotic power laws, viz. the critical decay and the von Schweidler law. The numerical results reveal a nonmonotonic dependence of the power-law exponents on the slab width and a nontrivial kink in the low-frequency susceptibility spectra. We also find qualitative agreement of these theoretical results to event-driven molecular dynamics simulations of polydisperse hard-sphere systems. In particular, the nontrivial dependence of the dynamical properties on the slab width is well reproduced.
Collapse
Affiliation(s)
- Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Lukas Schrack
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
29
|
Zhang H, Qiao K, Han Y. Power laws in pressure-induced structural change of glasses. Nat Commun 2020; 11:2005. [PMID: 32332710 PMCID: PMC7181815 DOI: 10.1038/s41467-020-15583-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 11/27/2022] Open
Abstract
Many glasses exhibit fractional power law (FPL) between the mean atomic volume va and the first diffraction peak position q1, i.e. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{\mathrm{a}} \propto q_1^{ - d}$$\end{document}va∝q1−d with d ≃ 2.5 deviating from the space dimension D = 3, under compression or composition change. What structural change causes such FPL and whether the FPL and d are universal remain controversial. Here our simulations show that the FPL holds in both two- and three-dimensional glasses under compression when the particle interaction has two length scales which can induce nonuniform local deformations. The exponent d is not universal, but varies linearly with the deformable part of soft particles. In particular, we reveal an unexpected crossover regime with d > D from crystal behavior (d = D) to glass behavior (d < D). The results are explained by two types of bond deformation. We further discover FPLs in real space from the radial distribution functions, which correspond to the FPLs in reciprocal space. A puzzle in metallic glass research is the existence of the fractional power law in reciprocal space, whilst its origin remains controversial. Zhang et al. show that nonuniform local deformations under compression induce this phenomenon and quantify the power law exponent at both two and three dimensions.
Collapse
Affiliation(s)
- Huijun Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaiyao Qiao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
30
|
Drewitt JWE, Turci F, Heinen BJ, Macleod SG, Qin F, Kleppe AK, Lord OT. Structural Ordering in Liquid Gallium under Extreme Conditions. PHYSICAL REVIEW LETTERS 2020; 124:145501. [PMID: 32338984 DOI: 10.1103/physrevlett.124.145501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The atomic-scale structure, melting curve, and equation of state of liquid gallium has been measured to high pressure (p) and high temperature (T) up to 26 GPa and 900 K by in situ synchrotron x-ray diffraction. Ab initio molecular dynamics simulations up to 33.4 GPa and 1000 K are in excellent agreement with the experimental measurements, providing detailed insight at the level of pair distribution functions. The results reveal an absence of dimeric bonding in the liquid state and a continuous increase in average coordination number n[over ¯]_{Ga}^{Ga} from 10.4(2) at 0.1 GPa approaching ∼12 by 25 GPa. Topological cluster analysis of the simulation trajectories finds increasing fractions of fivefold symmetric and crystalline motifs at high p-T. Although the liquid progressively resembles a hard-sphere structure towards the melting curve, the deviation from this simple description remains large (≥40%) across all p-T space, with specific motifs of different geometries strongly correlating with low local two-body excess entropy at high p-T.
Collapse
Affiliation(s)
- James W E Drewitt
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Francesco Turci
- H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Benedict J Heinen
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Simon G Macleod
- Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, United Kingdom
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Fei Qin
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Annette K Kleppe
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Chilton OX11 0DE, United Kingdom
| | - Oliver T Lord
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| |
Collapse
|
31
|
Pieprzyk S, Brańka AC, Yuste SB, Santos A, de Haro ML. Structural properties of additive binary hard-sphere mixtures. Phys Rev E 2020; 101:012117. [PMID: 32069599 DOI: 10.1103/physreve.101.012117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 11/07/2022]
Abstract
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Brańka, and D. M. Heyes, Phys. Rev. E 95, 062104 (2017)2470-004510.1103/PhysRevE.95.062104], combines accurate molecular-dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation. A comparison of the direct correlation functions obtained with the present scheme with those derived from theoretical results stemming from the Percus-Yevick (PY) closure and the so-called rational-function approximation (RFA) is performed. The density dependence of the leading poles of the Fourier transforms of the total correlation functions and the decay of the pair correlation functions of the mixtures are also addressed and compared to the predictions of the two theoretical approximations. A very good overall agreement between the results of the present scheme and those of the RFA is found, thus suggesting that the latter (which is an improvement over the PY approximation) can safely be used to predict reasonably well the long-range behavior, including the structural crossover, of the correlation functions of additive binary hard-sphere mixtures.
Collapse
Affiliation(s)
- S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - A Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - M López de Haro
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (U.N.A.M.), Temixco, Morelos 62580, Mexico
| |
Collapse
|
32
|
Pieprzyk S, Brańka AC, Heyes DM, Bannerman MN. A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation. Phys Chem Chem Phys 2020; 22:8834-8845. [PMID: 32285883 DOI: 10.1039/d0cp00494d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a new set of hard sphere (HS) thermal conductivity coefficient, λ, data obtained by Molecular Dynamics (MD) computer simulation, over a density range covering the dilute fluid to near the close-packed solid, and for a large number of particles (up to N = 13 1072) and long simulation times. The N-dependence of the thermal conductivity is shown to be proportional to N-2/3 to a good approximation over a wide range of system sizes, which enabled λ values in the thermodynamic limit to be predicted accurately. The fluid and solid λ can be represented well by the Enskog theory (ET) formula, λE, times a density-dependent correction term, which is close to unity for the fluid and practically constant for the solid. The convergence of the MD λ data back towards ET in the metastable fluid starts just above the freezing density. For the HS solid and dense fluid it was found that the thermal conductivity is nearly linear in pressure, as has been observed experimentally for a number of solids. Simple excess entropy scaling over the higher density fluid phase region was found, and Rosenfeld's exponential relationship can be fitted to the simulation data for the solid to a high degree of accuracy. The simulation analysis has revealed a number of new trends in the behaviour of the HS thermal conductivity which could be useful in building more accurate models for heat conduction in experimental systems.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
| | - Arkadiusz C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
| | - David M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
33
|
do Rosário JJ, Häntsch Y, Pasquarelli RM, Dyachenko PN, Vriend E, Petrov AY, Furlan KP, Eich M, Schneider GA. Advancing the fabrication of YSZ-inverse photonic glasses for broadband omnidirectional reflector films. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Yoon TJ, Ha MY, Lee WB, Lee YW, Lazar EA. Topological generalization of the rigid-nonrigid transition in soft-sphere and hard-sphere fluids. Phys Rev E 2019; 99:052603. [PMID: 31212432 DOI: 10.1103/physreve.99.052603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 06/09/2023]
Abstract
A fluid particle changes its dynamics from diffusive to oscillatory as the system density increases up to the melting density. Hence the notion of the Frenkel line was introduced to demarcate the fluid region into rigid and nonrigid liquid subregions based on the collective particle dynamics. In this work, we apply a topological framework to locate the Frenkel lines of the soft-sphere and the hard-sphere models relying on the system configurations. The topological characteristics of the ideal gas and the maximally random jammed state are first analyzed, then the classification scheme designed in our earlier work is applied to soft-sphere and hard-sphere fluids. The dependence of the classification result on the bulk density is understood based on the theory of fluid polyamorphism. The percolation behavior of solid-like clusters is described based on the fraction of solid-like molecules in an integrated manner. The crossover densities are obtained by examining the percolation of solid-like clusters. The resultant crossover densities of soft-sphere fluids converge to that of hard-sphere fluid. Hence the topological method successfully highlights the generality of the Frenkel line.
Collapse
Affiliation(s)
- Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Youn-Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Emanuel A Lazar
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
35
|
Nishio K, Lu AKA, Miyazaki T. Entropy-driven docosahedral short-range order in simple liquids and glasses. Phys Rev E 2019; 99:022121. [PMID: 30934319 DOI: 10.1103/physreve.99.022121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/07/2022]
Abstract
The energetically favored icosahedral structure has been seen as the central figure for describing the local structure of simple liquids and glasses. Although regular icosahedral structures are rarely found, it is accepted that distorted icosahedral structures occur in simple liquids and glasses. However, which local structure dominates and why it is more frequent than the others remain unanswered questions. In this study, by using a recently developed structure descriptor, we show that docosahedral structures are the most favored not only in models of simple liquids and glasses but also in an experimental colloid glass. We also show that the the predominance of docosahedral structures is entropy-driven. Our findings represent a significant milestone towards comprehending mysterious phenomena such as supercooling, glass transition, and crystallization, where local structures play a key role.
Collapse
Affiliation(s)
- Kengo Nishio
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| | - Anh Khoa Augustin Lu
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| | - Takehide Miyazaki
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
36
|
Pieprzyk S, Bannerman MN, Brańka AC, Chudak M, Heyes DM. Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation. Phys Chem Chem Phys 2019; 21:6886-6899. [PMID: 30888383 DOI: 10.1039/c9cp00903e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Revised thermodynamic and dynamical properties of the hard sphere (HS) system are obtained from extensive molecular dynamics calculations carried out with large system sizes (number of particles, N) and long times. Accurate formulas for the compressibility factor of the HS solid and fluid branches are proposed, which represent the metastable region and take into account its divergence at close packing. Some basic second-order thermodynamic properties are obtained and a maximum in some of their derivatives in the metastable fluid region is found. The thermodynamic parameters associated with the melting-freezing transition have been determined to four digit accuracy, which generates accurate new values for the coexistence properties of the HS system. For the self-diffusion coefficient, D, it is shown that relatively large systems (N > 104) are required to achieve an accurate linear extrapolation of D to the infinite size limit with a D vs. N-1/3 plot. Moreover, it is found that there is a density dependence of the value of the slope in the linear regime. The density dependent correction becomes practically insignificant at higher densities and the hydrodynamic formula found in the literature is still accurate. However, with decreasing density the density dependence of the size correction cannot be neglected, which indicates that other sources of N-dependence, apart from those derived on purely hydrodynamic grounds, may also be important (and as yet unaccounted for). A detailed analytic representation of the density dependence of the HS self-diffusion coefficient and the HS viscosity, η, is given. It is shown that the HS viscosity near freezing and in the metastable region can be described well by the Krieger-Dougherty equation. Both D and η start to scale at high densities and in the metastable region in such a way that Dηp = const, where p ≃ 0.97, and D → 0 and η → ∞ at a packing fraction of 0.58, which coincides with some previous predictions of the HS glass transition density.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
| | | | | | | | | |
Collapse
|
37
|
Moir C, Lue L, Gale JD, Raiteri P, Bannerman MN. Anomalous heat transport in binary hard-sphere gases. Phys Rev E 2019; 99:030102. [PMID: 30999486 DOI: 10.1103/physreve.99.030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Equilibrium and nonequilibrium molecular dynamics (MD) are used to investigate the thermal conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture can not only lie outside the series and parallel bounds set by their pure component values, but can lie beyond even the pure component fluid values. The MD simulations verify that revised Enskog theory can accurately predict nonequilibrium thermal conductivities at low densities and this theory is applied to explore the model parameter space. Only certain mass and size ratios are found to exhibit conductivity enhancements above the parallel bounds and dehancement below the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen gas mixtures and a review of the literature confirms the existence of mixture thermal conductivity below the series bound and even below the pure fluid values, in accordance with the predictions of revised Enskog theory. The results reported here may reignite the debate in the nanofluid literature on the possible existence of anomalous thermal conductivities outside the series and parallel bounds as this Rapid Communication demonstrates they are a fundamental feature of even simple fluids.
Collapse
Affiliation(s)
- Craig Moir
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
- Curtin Institute for Computation, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Julian D Gale
- Curtin Institute for Computation, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia
| | - Marcus N Bannerman
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
38
|
Robinson JF, Turci F, Roth R, Royall CP. Morphometric Approach to Many-Body Correlations in Hard Spheres. PHYSICAL REVIEW LETTERS 2019; 122:068004. [PMID: 30822057 DOI: 10.1103/physrevlett.122.068004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
We model the thermodynamics of local structures within the hard sphere liquid at arbitrary volume fractions through the morphometric calculation of n-body correlations. We calculate absolute free energies of local geometric motifs in excellent quantitative agreement with molecular dynamics simulations across the liquid and supercooled liquid regimes. We find a bimodality in the density library of states where fivefold symmetric structures appear lower in free energy than fourfold symmetric structures and from a single reaction path predict a dynamical barrier which scales linearly in the compressibility factor. The method provides a new route to assess changes in the free energy landscape at volume fractions dynamically inaccessible to conventional techniques.
Collapse
Affiliation(s)
- Joshua F Robinson
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
- School of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
39
|
Schindler T, Kapfer SC. Nonequilibrium steady states, coexistence, and criticality in driven quasi-two-dimensional granular matter. Phys Rev E 2019; 99:022902. [PMID: 30934354 DOI: 10.1103/physreve.99.022902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Nonequilibrium steady states of vibrated inelastic frictionless spheres are investigated in quasi-two-dimensional confinement via molecular dynamics simulations. The phase diagram in the density-amplitude plane exhibits a fluidlike disordered and an ordered phase with threefold symmetry, as well as phase coexistence between the two. A dynamical mechanism exists that brings about metastable traveling clusters and at the same time stable clusters with anisotropic shapes at low vibration amplitude. Moreover, there is a square bilayer state which is connected to the fluid by BKTHNY-type two-step melting with an intermediate tetratic phase. The critical behavior of the two continuous transitions is studied in detail. For the fluid-tetratic transition, critical exponents of γ[over ̃]=1.73, η_{4}≈1/4, and z=2.05 are obtained.
Collapse
Affiliation(s)
- Thomas Schindler
- Theoretische Physik 1, FAU Erlangen-Nürnberg, Staudtstrasse 7, 91058 Erlangen, Germany
| | - Sebastian C Kapfer
- Theoretische Physik 1, FAU Erlangen-Nürnberg, Staudtstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
40
|
Hallett JE, Turci F, Royall CP. Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations. Nat Commun 2018; 9:3272. [PMID: 30115905 PMCID: PMC6095888 DOI: 10.1038/s41467-018-05371-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022] Open
Abstract
Glasses are among the most widely used of everyday materials, yet the process by which a liquid's viscosity increases by 14 decades to become a glass remains unclear, as often contradictory theories provide equally good descriptions of the available data. Knowledge of emergent lengthscales and higher-order structure could help resolve this, but this requires time-resolved measurements of dense particle coordinates-previously only obtained over a limited time interval. Here we present an experimental study of a model colloidal system over a dynamic window significantly larger than previous measurements, revealing structural ordering more strongly linked to dynamics than previously found. Furthermore we find that immobile regions and domains of local structure grow concurrently with density, and that these regions have low configurational entropy. We thus show that local structure plays an important role at deep supercooling, consistent with a thermodynamic interpretation of the glass transition rather than a principally dynamic description.
Collapse
Affiliation(s)
- James E Hallett
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK
| | - Francesco Turci
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
41
|
Abstract
The Frenkel line, a crossover line between rigid and nonrigid dynamics of fluid particles, has recently been the subject of intense debate regarding its relevance as a partitioning line of the supercritical phase, where the main criticism comes from the theoretical treatment of collective particle dynamics. From an independent point of view, this Letter suggests that the two-phase thermodynamics model may alleviate this contentious situation. The model offers new criteria for defining the Frenkel line in the supercritical region and builds a robust connection among the preexisting, seemingly inconsistent definitions. In addition, one of the dynamic criteria locates the rigid-nonrigid transition of the soft-sphere and the hard-sphere models. Hence, we suggest the Frenkel line be considered as a dynamic rigid-nonrigid fluid boundary, without any relation to gas-liquid transition. These findings provide an integrative viewpoint combining fragmentized definitions of the Frenkel line, allowing future studies to be carried out in a more reliable manner.
Collapse
Affiliation(s)
- Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Youn-Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
42
|
Paganini IE, Davidchack RL, Laird BB, Urrutia I. Properties of the hard-sphere fluid at a planar wall using virial series and molecular-dynamics simulation. J Chem Phys 2018; 149:014704. [DOI: 10.1063/1.5025332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Iván E. Paganini
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Buenos Aires, Argentina
- Instituto de Nanociencias y Nanotecnología, INN CONICET-CNEA, Buenos Aires, Argentina
| | | | - Brian B. Laird
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Ignacio Urrutia
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Buenos Aires, Argentina
- Instituto de Nanociencias y Nanotecnología, INN CONICET-CNEA, Buenos Aires, Argentina
| |
Collapse
|
43
|
Affiliation(s)
- C. Patrick Royall
- H.H. Wills Physics Laboratory, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
- Centre for Nanoscience and Quantum Information, Bristol, UK
| |
Collapse
|
44
|
Zerón IM, Vega C, Benavides AL. Continuous version of a square-well potential of variable range and its application in molecular dynamics simulations. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1481232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- I. M. Zerón
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Guanajuato, México
| | - C. Vega
- Depto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A. L. Benavides
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Guanajuato, México
| |
Collapse
|
45
|
Royall CP, Williams SR, Tanaka H. Vitrification and gelation in sticky spheres. J Chem Phys 2018; 148:044501. [PMID: 29390812 DOI: 10.1063/1.5000263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and "sticky" spheres. It has been suggested that "spinodal" gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499-504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the "discontinuous" nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic, dynamic, and structural basis upon which we can distinguish gelation from vitrification.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Stephen R Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
46
|
Abstract
Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter of clusters.
Collapse
Affiliation(s)
- Satoshi Takada
- Earthquake Research Institute, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Brańka AC, Pieprzyk S, Heyes DM. Thermodynamic curvature of soft-sphere fluids and solids. Phys Rev E 2018; 97:022119. [PMID: 29548097 DOI: 10.1103/physreve.97.022119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 06/08/2023]
Abstract
The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r^{-n}) potential, where r is the pair separation and 1/n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.
Collapse
Affiliation(s)
- A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
48
|
Hayakawa H, Takada S, Garzó V. Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening. Phys Rev E 2017; 96:042903. [PMID: 29347493 DOI: 10.1103/physreve.96.042903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 06/07/2023]
Abstract
The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved by means of two independent but complementary routes: (i) Grad's moment method and (ii) event-driven Langevin simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser systems. The comparison between theory and simulations indicates that while the theoretical predictions for the kinetic temperature agree well with simulations for densities φ≲0.5, the agreement for the other rheological quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities (φ≲0.3) if the inelasticity during collisions between particles is not large.
Collapse
Affiliation(s)
- Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Takada
- Earthquake Research Institute, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan and Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Vicente Garzó
- Departamento de Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
49
|
Ríos de Anda I, Turci F, Sear RP, Royall CP. Long-lived non-equilibrium interstitial solid solutions in binary mixtures. J Chem Phys 2017; 147:124504. [DOI: 10.1063/1.4985917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Francesco Turci
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
| | - Richard P. Sear
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
50
|
Mandal S, Lang S, Boţan V, Franosch T. Nonergodicity parameters of confined hard-sphere glasses. SOFT MATTER 2017; 13:6167-6177. [PMID: 28796271 DOI: 10.1039/c7sm00905d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Within a recently developed mode-coupling theory for fluids confined to a slit we elaborate numerical results for the long-time limits of suitably generalized intermediate scattering functions. The theory requires as input the density profile perpendicular to the plates, which we obtain from density functional theory within the fundamental-measure framework, as well as symmetry-adapted static structure factors, which can be calculated relying on the inhomogeneous Percus-Yevick closure. Our calculations for the nonergodicity parameters for both the collective as well as for the self motion are in qualitative agreement with our extensive event-driven molecular dynamics simulations for the intermediate scattering functions for slightly polydisperse hard-sphere systems at high packing fraction. We show that the variation of the nonergodicity parameters as a function of the wavenumber correlates with the in-plane static structure factors, while subtle effects become apparent in the structure factors and relaxation times of higher mode indices. A criterion to predict the multiple reentrant from the variation of the in-plane static structure is presented.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|