1
|
Liu J, Li X, Lv R, Chu Y, Qian M, Zhang W. Fluoroquinolone antibiotics trigger selective oxidation in the trace-Cu(II)/peroxydisulfate system: The synergistic effect of dual reactive sites in chemical structure. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136819. [PMID: 39657492 DOI: 10.1016/j.jhazmat.2024.136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Research on transition metal-triggered advanced oxidation processes (TM-AOPs) has primarily focused on the regulation of catalysts and oxidants, but the alternative route that involves utilizing pollutant-derived electrons to enhance TM-AOPs has been largely overlooked. This study presents a case of selective degradation using fluoroquinolone antibiotics, with ofloxacin (OFX) selected as the model pollutant. Under the presence of PDS and trace Cu(II) (10 μM or 0.64 mg/L, below the limit of US drinking water standard), the OFX degradation rate was enhanced by 12.1 times compared to sole PDS oxidation. Notably, the system exhibited high pollutant selectivity and efficient oxidant utilization. Through various experimental methods, Cu(I) was confirmed as a crucial intermediate, while Cu(III) and •OH was identified as the predominant and secondary reactive oxidative species, respectively. The critical role of OFX was proved to be chelating with Cu(II) and facilitating the production of Cu(I). The degradation selectivity of OFX was attributed to the synergy of the chelating and oxidation sites in its chemical structure. Intramolecular single electron transfer occurred between the chelated OFX and Cu(III), leading to the Cu(III) reduction and OFX oxidation on the piperazine nitrogen atom. This study serves as a representative example of a greener pollutant-induced catalytic process based on the utilization of pollutant's electron bank, and offers novel insights into the correlation between a pollutant's chemical structure and its degradation selectivity.
Collapse
Affiliation(s)
- Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Ruolin Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yingying Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Mengying Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Kore S, Maddikayala S, Bengi K, Pulimamidi S. DNA Interaction, Molecular Docking, Antimicrobial, Anticancer and Thermal Studies of Ternary Metal Complexes of N‐Methylbenzylamine and Ethylenediamine. Appl Organomet Chem 2024; 38. [DOI: 10.1002/aoc.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/04/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTN‐Methylbenzylamine and ethylenediamine were utilized as primary and auxiliary ligands, respectively, alongside metal salts to synthesize ternary metal complexes: [FeCl3(Nmba)(en)], [CoCl2(Nmba)(en)(H2O)] and [CuCl2(Nmba)(en)(H2O)]. These complexes were thoroughly characterized using spectral and analytical techniques, revealing an octahedral geometry for all. Coats–Redfern calculations indicated their non‐spontaneous nature yet highlighted their thermal stability. DNA binding studies unveiled a groove binding mode for the complexes, with intrinsic binding constants (Kb) and Stern–Volmer quenching constant (Ksq) supporting their strong binding capabilities. Nuclease activity against pBR322 was assessed through gel electrophoresis. Additionally, docking studies using AutoDock 4.2 software provided insights into their binding affinities. In terms of biological activities, the Cu complex demonstrated superior cytotoxicity and antibacterial and antifungal properties compared to the other ternary metal complexes. This suggests its potential for further exploration in biomedical applications.
Collapse
Affiliation(s)
- Srinivas Kore
- Department of Chemistry, University College of Science Osmania University Hyderabad Telangana India
- Department of Chemistry Government Arts & Science College Kamareddy Telangana India
| | - Sravanthi Maddikayala
- Department of Chemistry, University College for Women Osmania University Hyderabad Telangana India
| | - Kavitha Bengi
- Department of Chemistry, Nizam College Osmania University Hyderabad Telangana India
| | - Saritha Reddy Pulimamidi
- Department of Chemistry, University College of Science Osmania University Hyderabad Telangana India
| |
Collapse
|
3
|
Marzouk A, Papavasileiou KD, Peristeras LD, Bezemer L, van Bavel AP, Shenai PM, Economou IG. A systematic DFT study of structure and electronic properties of titanium dioxide. J Comput Chem 2024; 45:2153-2166. [PMID: 38785277 DOI: 10.1002/jcc.27376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
DFT functionals are of paramount importance for an accurate electronic and structural description of transition metal systems. In this work, a systematic analysis using some well-known and commonly used DFT functionals is performed. A comparison of the structural and energetic parameters calculated with the available experimental data is made in order to find the adequate functional for an accurate description of the TiO2 bulk and surface of both anatase and rutile structures. In the absence of experimental data on the surface energy, the theoretical predictions obtained using the high-accuracy HSE06 functional were used as a reference to compare against the surface energy values calculated with the other DFT functionals. A clear improvement in the electronic description of both anatase and rutile was observed by introducing the Hubbard U correction term to PBE, PW91, and OptPBE functionals. The OptPBE-U4 functional was found to offer a good compromise between accurately describing the structural and electronic properties of titania.
Collapse
Affiliation(s)
- Asma Marzouk
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Konstantinos D Papavasileiou
- Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Athens, Greece
| | - Loukas D Peristeras
- Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Athens, Greece
| | - Leendert Bezemer
- GTL and XTL Research, Shell Global Solutions International BV, Amsterdam, The Netherlands
| | - Alexander P van Bavel
- Next Generation Breakthrough Research, Shell Global Solutions International BV, Amsterdam, The Netherlands
| | - Prathamesh M Shenai
- Computational Chemistry and Material Science, Shell India Markets Pvt. Ltd, Shell India Markets Pvt. Ltd, Banglore, India
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
4
|
Mansour MSA, Abdelkarim AT, El-Sherif AA, Mahmoud WH. Metal complexes featuring a quinazoline schiff base ligand and glycine: synthesis, characterization, DFT and molecular docking analyses revealing their potent antibacterial, anti-helicobacter pylori, and Anti-COVID-19 activities. BMC Chem 2024; 18:150. [PMID: 39127681 DOI: 10.1186/s13065-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024] Open
Abstract
Mixed ligand complexes of manganese(II), cobalt(II), copper(II), and cadmium(II)with an innovative Schiff base ligand denoted as (L1), 4-(2-((1E,2E)-1-(2-(p-tolyl)hydrazineylidene)propan-2-ylidene)hydrazineyl), served as the principal ligand, while glycine (L2) was employed as secondary ligand were successfully effectively characterized through a comprehensive set of analyses, including Elemental analysis, UV-Visible, FT-IR, Mass spectra, and conductometric measurements. Density functional theory (DFT) computations were executed to discern the enduring electronic arrangement, the energy gap, dipole moment and chemical hardness of the hybrid ligand assemblies. The proposed geometry for the complexes is a distorted octahedral structure. The antimicrobial efficacy of these compounds was assessed against a range of bacterial and fungal strains. Notably, these complexes exhibited promising antimicrobial activities, with the cadmium (II) complex demonstrating superior efficacy towards all tested organisms. These compounds were also examined for their antibiotic properties against H. pylori to explore their broader medical potential. The Schiff base ligand and its corresponding metal complexes displayed substantial potential as an antibiotic against H. pylori. Additionally, the antitumor potential of the synthesized complexes was assessed against MCF-7 (Breast carcinoma) cells-the Cu (II) complex demonstrated superior activity with the lowest IC50 value compared to cisplatin. Moreover, it exhibited reduced cytotoxicity towards normal cells (VERO cells) compared to cisplatin, establishing it as the most potent compound in the study. Furthermore, molecular docking was explored of the Schiff base ligand and its corresponding cadmium(II) complex. The analysis of the docking study yielded valuable structural insights that can be effectively utilized in conducting inhibition studies for example against COVID-19. This comprehensive study highlights these synthesized compounds' multifaceted applications and promising bioactive properties.
Collapse
Affiliation(s)
- M S A Mansour
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Abeer T Abdelkarim
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Walaa H Mahmoud
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Pliego JR. Copper-Catalyzed Aromatic Fluorination of 2-(2-bromophenyl)pyridine via Cu(I)/Cu(III) Mechanism in Acetonitrile Solvent: Cluster-Continuum Free Energy Profile and Microkinetic Analysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Rajalakshmi C, Krishnan A, Saranya S, Anilkumar G, Thomas VI. A detailed theoretical investigation to unravel the molecular mechanism of the ligand-free copper-catalyzed Suzuki cross-coupling reaction. Org Biomol Chem 2022; 20:4539-4552. [PMID: 35388388 DOI: 10.1039/d2ob00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Suzuki-Miyaura coupling (SMC) represents a very efficacious method for constructing C-C bonds in organic synthesis. The ligand-free variants of SMC have been grabbing attention these days. Despite this momentousness, the mechanistic details of the ligand-free variants are scant in the literature. Herein, we have carried out a detailed mechanistic investigation into the ligand-free Cu-catalyzed SMC of unsaturated organic halides with aryl boronic acid with the aid of density functional theory (DFT) calculations employing the conductor-like polarizable continuum model (CPCM) method. The present study elucidates that in the absence of ancillary ligands on the metal, the substrates, base, and solvent molecules could act as pseudo-ancillary ligands to facilitate the cross-coupling reaction. The investigation further revealed that unsaturated halides like alkynyl halides/vinyl halides could act as good ancillary ligands for copper by forming a Cu-π intermediate and promoting a facile transmetalation process. However, regarding the oxidative addition and reductive elimination steps, a concerted pathway is observed contrary to Pd catalyzed Suzuki coupling, owing to the instability of Cu(III) species and the favourability of Csp2-Csp bond formation. In the whole set of mechanisms explored, oxidative addition/oxidative nucleophilic substitution was the rate-determining step in all the cases. A thermodynamically stable π-coordinated intermediate species where the substrate and base molecule are coordinated to the metal center is identified as the rate-determining species for the ligand-free Suzuki cross-coupling reaction. The presence of the aforesaid intermediate increases the energy span and consequently the activation barrier for the rate-determining step. This study unveiled a theoretical rationale for the high-temperature requirement in the ligand-free Cu-catalyzed SMC reaction.
Collapse
Affiliation(s)
- C Rajalakshmi
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Anandhu Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| | - Vibin Ipe Thomas
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| |
Collapse
|
7
|
Kavitha B, Sravanthi M, Saritha Reddy P. Studies on DNA binding, cleavage, molecular docking, antimicrobial and anticancer activities of Cr(III), Fe(III), Co(II) and Cu(II) complexes of
o
‐vanillin and fluorobenzamine Schiff base ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bengi Kavitha
- Department of Chemistry Osmania University College for Women Hyderabad India
| | | | | |
Collapse
|
8
|
Zhang YL, Wang FL, Ren AM. Reliability of computed molecular structures. J Comput Chem 2022; 43:465-476. [PMID: 35023181 DOI: 10.1002/jcc.26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
When the structures of 1342 molecules are optimized by 30 methods and 7 basis sets, there appear 289 (21.54%) problematic molecules and 112 (8.35%) failed ones. When 278 problematic molecules are compared, the best methods are BHandH and LC-wPBE, while B97D, BP86, HFS, VSXC, and HCTH are very unreliable. When 179 problematic molecules are computed with larger basis sets, the smallest mean absolute deviation (MAD) of bond angle (2.3°) is shown by QCISD(T)/cc-pVTZ, while the smallest MAD of bond length (0.021 Å), the best SUM1 (4.9 unit), and the best SUM2 (2.4 unit) are shown by DSDPBEP86(Full), DSDPBEP86, PBE1PBE-D3, MP2, and MP2(Full) in combination with aug-cc-pVQZ, cc-pVQZ, Def2QZVP, Def2TZVPP, and/or 6-311++G(3df,3pd). Very large basis sets, for example, larger than cc-pVTZ usually have to be used to obtain very good structures and the performances of many density-functional theory methods are encouraging. The best results may be the limit of modern computational chemistry.
Collapse
Affiliation(s)
- Yi-Liang Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Fu-Li Wang
- College of Chemistry, Jilin University, Changchun, China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| |
Collapse
|
9
|
Feng C, Cheng L, Ma H, Ma L, Wu Q, Yang J. Unraveling the Mechanism of Aerobic Alcohol Oxidation by a Cu/pytl-β-Cyclodextrin/TEMPO Catalytic System under Air in Neat Water. Inorg Chem 2021; 60:14132-14141. [PMID: 34459198 DOI: 10.1021/acs.inorgchem.1c01504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism for the oxidation of p-tolylmethanol to p-tolualdehyde catalyzed by a Cu/pytl-β-cyclodextrin/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-1-oxy) catalytic system under air in neat water is fully investigated by density functional theory (DFT). Four possible pathways (paths A → D) are presented. The calculated TOF = 0.67 h-1 for path A is consistent with the experimental TOF = 1.9 h-1 but much lower than that for path D (TOF = 1.1 × 105 h-1). The results demonstrate that path A is the dominant pathway under the optimal experimental conditions, even though path D is more kinetically favorable. This is because the concentration of precatalyst 11 [(pytl-β-CD)CuII(OH)] in path D is too low to start path D, so p-tolylmethanol oxidation can only proceed via path A. This finding implies that the relative concentration of precatalysts in a one-pot synthesis experiment plays a vital role in the aerobic alcohol oxidation reaction. Based on this finding, we speculate that the direct use of the presynthesized precatalyst 11 or addition of an appropriate amount of NaOH to the reaction solution, but with the total amount of the base added unchanged, is a good way to improve its catalytic activity. Meanwhile, the solvent water was not found to directly participate in the catalytic active sites for the oxidation of alcohols but rather inhibited it by forming the hydrogen-bonded network.
Collapse
Affiliation(s)
- Chunmei Feng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lin Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Huiyan Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lisha Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Qi Wu
- High Performance Computing Center of Jilin University, Changchun 130022, China
| | - Jucai Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| |
Collapse
|
10
|
Ramek M, Pejić J, Sabolović J. Structure prediction of neutral physiological copper(II) compounds with l-cysteine and l-histidine. J Inorg Biochem 2021; 223:111536. [PMID: 34274876 DOI: 10.1016/j.jinorgbio.2021.111536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Bis(aminoacidato)copper(II) [CuII(aa)2] coordination compounds are the physiological species of copper(II) amino acid compounds in blood plasma. Since there are no experimental data in the literature about the geometries that physiological CuII(aa)2 could form with l-cysteine (Cys), that is, for bis(l-cysteinato)copper(II) [Cu(Cys)2] and the ternary (l-histidinato)(l-cysteinato)copper(II) [Cu(His)(Cys)], this paper computationally examines the possible conformations that the two compounds could form with the Cys ligand having a protonated sulfur, as in the conventional zwitterion, which was determined to be prevailing in aqueous solution. These two amino acids can bind metals in a tridentate fashion and thus form many possible coordination patterns. Density functional calculations were performed for the conformational analyses in the gas phase and in implicitly modeled aqueous solution using a polarizable continuum model. Additionally, we examine which coordination mode, with thiol or thiolate group, is more stable. The Cys coordination via the amino N and carboxylato O atoms (a glycinato mode) is obtained as the most stable one in aqueous Cu(Cys)2, and also in Cu(His)(Cys) when the His glycinato or histaminato mode combines with the intact thiol group. Whereas the conformers with N and thiol S as the copper(II) donor atoms are predicted to be the least stable, those with the Cu-N and Cu-S(thiolate) bonding (and protonated carboxylato group) are the most stable. The differences are explained by different covalent and ionic contributions of Cu-S(thiol) vs. Cu-S(thiolate). The study can contribute to the insight into formation and reactivity of the copper(II) cysteinato complexes in solution.
Collapse
Affiliation(s)
- Michael Ramek
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Jelena Pejić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Jasmina Sabolović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Perkal O, Qasem Z, Turgeman M, Schwartz R, Gevorkyan-Airapetov L, Pavlin M, Magistrato A, Major DT, Ruthstein S. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study. J Phys Chem B 2020; 124:4399-4411. [PMID: 32396355 PMCID: PMC7294806 DOI: 10.1021/acs.jpcb.0c01744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Atox1 is a human
copper metallochaperone that is responsible for
transferring copper ions from the main human copper transporter, hCtr1,
to ATP7A/B in the Golgi apparatus. Atox1 interacts with the Ctr1 C-terminal
domain as a dimer, although it transfers the copper ions to ATP7A/B
in a monomeric form. The copper binding site in the Atox1 dimer involves
Cys12 and Cys15, while Lys60 was also suggested to play a role in
the copper binding. We recently showed that Atox1 can adopt various
conformational states, depending on the interacting protein. In the
current study, we apply EPR experiments together with hybrid quantum
mechanics–molecular mechanics molecular dynamics simulations
using a recently developed semiempirical density functional theory
approach, to better understand the effect of Atox1’s conformational
states on copper coordination. We propose that the flexibility of
Atox1 occurs owing to protonation of one or more of the cysteine residues,
and that Cys15 is an important residue for Atox1 dimerization, while
Cys12 is a critical residue for Cu(I) binding. We also show that Lys60
electrostatically stabilizes the Cu(I)–Atox1 dimer.
Collapse
Affiliation(s)
- Ortal Perkal
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zena Qasem
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Meital Turgeman
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Matic Pavlin
- CNR-IOM at SISSA, via Bonomea 265, 34135, Trieste, Italy
| | | | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
12
|
Mahjoubi K, Mehnen B, Linguerri R, Hochlaf M, Mouhib H. Copper–Chalcogen Bonds in Olfaction: Accurate ab Initio Characterization of CuSH and CuOH. J Phys Chem A 2019; 123:1177-1185. [DOI: 10.1021/acs.jpca.8b10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Mahjoubi
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - B. Mehnen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - R. Linguerri
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - M. Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - H. Mouhib
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
13
|
Li S, Cheng L, Wu Q, Zhang Q, Yang J, Liu J. Mechanism of Aerobic Alcohol Oxidation Mediated by Water-Soluble Cu II
-TEMPO Catalyst in Water: A Density Functional Theory Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201702755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siyu Li
- College of Chemical Engineering; Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation; Hohhot 010051 PR China
| | - Lin Cheng
- College of Chemical Engineering; Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation; Hohhot 010051 PR China
| | - Qi Wu
- High Performance Computing Center of Jilin University; Changchun 130022 PR China
| | - Qiancheng Zhang
- College of Chemical Engineering; Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation; Hohhot 010051 PR China
| | - Jucai Yang
- College of Chemical Engineering; Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation; Hohhot 010051 PR China
| | - Juming Liu
- College of Chemical Engineering; Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation; Hohhot 010051 PR China
| |
Collapse
|
14
|
Paenurk E, Gershoni-Poranne R, Chen P. Trends in Metallophilic Bonding in Pd–Zn and Pd–Cu Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eno Paenurk
- Laboratorium für Organische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Renana Gershoni-Poranne
- Laboratorium für Organische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Peter Chen
- Laboratorium für Organische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Kosar N, Mahmood T, Ayub K. Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: A benchmark study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Sabolović J, Ramek M, Marković M. Calculating the geometry and Raman spectrum of physiological bis(l-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems. J Mol Model 2017; 23:290. [DOI: 10.1007/s00894-017-3448-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022]
|
17
|
Hu L, Chen K, Chen H. Modeling σ-Bond Activations by Nickel(0) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal? J Chem Theory Comput 2017; 13:4841-4853. [PMID: 28881134 DOI: 10.1021/acs.jctc.7b00708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE‡) and reaction energy (ΔER) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE‡ quite accurately, which is not true for the ΔER calculations. Using highest-level CCSD(T) results of ΔE‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved performance.
Collapse
Affiliation(s)
- Lianrui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Kejuan Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
18
|
Mechanistic Insight into the 2° Alcohol Oxidation Mediated by an Efficient CuI/L-Proline-TEMPO Catalyst—A Density Functional Theory Study. Catalysts 2017. [DOI: 10.3390/catal7090264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Mutter ST, Deeth RJ, Turner M, Platts JA. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides. J Biomol Struct Dyn 2017; 36:1145-1153. [DOI: 10.1080/07391102.2017.1313780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
20
|
Moussa J, Loch A, Chamoreau LM, Degli Esposti A, Bandini E, Barbieri A, Amouri H. Luminescent Cyclometalated Platinum Complexes with π-Bonded Catecholate Organometallic Ligands. Inorg Chem 2017; 56:2050-2059. [PMID: 28182410 DOI: 10.1021/acs.inorgchem.6b02731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of cyclometalated platinum(II) complexes of the type [(ppy)Pt(LM)]n+ (n = 0, 1) with π-bonded catecholates acting as organometallic ligands (LM) have been prepared and characterized by analytical techniques. In addition, the structures of two complexes of the series were determined by single-crystal X-ray diffraction. The packing shows the formation of a 1D supramolecular assembly generated by dPt-πCp* interactions among individual units. All complexes are luminescent in the solid state and in solution media. The results of photophysics have been rationalized by means of density functional theory (DFT) and time-dependent DFT investigations.
Collapse
Affiliation(s)
- Jamal Moussa
- Sorbonne Universités, UPMC Universités Paris 06, and CNRS, IPCM, UMR 8232 , 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Aruny Loch
- Sorbonne Universités, UPMC Universités Paris 06, and CNRS, IPCM, UMR 8232 , 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Lise-Marie Chamoreau
- Sorbonne Universités, UPMC Universités Paris 06, and CNRS, IPCM, UMR 8232 , 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Alessandra Degli Esposti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR) , Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Bandini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR) , Via Gobetti 101, 40129 Bologna, Italy
| | - Andrea Barbieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR) , Via Gobetti 101, 40129 Bologna, Italy
| | - Hani Amouri
- Sorbonne Universités, UPMC Universités Paris 06, and CNRS, IPCM, UMR 8232 , 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
21
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|
22
|
Marković M, Ramek M, Loher C, Sabolović J. The Important Role of the Hydroxyl Group on the Conformational Adaptability in Bis(l-threoninato)copper(II) Compared to Bis(l-allo-threoninato)copper(II): Quantum Chemical Study. Inorg Chem 2016; 55:7694-708. [DOI: 10.1021/acs.inorgchem.6b01157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marijana Marković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb, Croatia
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, A-8010 Graz, Austria
| | - Michael Ramek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb, Croatia
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, A-8010 Graz, Austria
| | - Claudia Loher
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb, Croatia
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, A-8010 Graz, Austria
| | - Jasmina Sabolović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, P.O. Box 291, HR-10001 Zagreb, Croatia
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
23
|
Yan L, Lu Y, Li X. A density functional theory protocol for the calculation of redox potentials of copper complexes. Phys Chem Chem Phys 2016; 18:5529-36. [DOI: 10.1039/c5cp06638g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The calculated redox potentials of copper complexes agree nicely with their corresponding experimental redox potentials.
Collapse
Affiliation(s)
- Liuming Yan
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yi Lu
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Xuejiao Li
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
24
|
Neves RPP, Fernandes PA, Varandas AJC, Ramos MJ. Benchmarking of Density Functionals for the Accurate Description of Thiol-Disulfide Exchange. J Chem Theory Comput 2015; 10:4842-56. [PMID: 26584371 DOI: 10.1021/ct500840f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A set of 92 density functionals was employed to accurately characterize thiol-disulfide exchange. The properties we have benchmarked throughout the study include the geometry of a 15 atoms model system, the potential energy surface, the activation barrier, and the energy of reaction for thiol-disulfide exchange. Reference energies were determined at the CCSD(T)/CBS//MP2/aug-cc-pVDZ level of theory, and reference geometries were calculated at the MP2/aug-cc-pVTZ level. M11-L, M06-2X, M06-HF, N12-SX, PBE1PBE, PBEh1PBE, and OHSE2PBE described better the geometry of the model system, with average deviations of 0.06 Å in bond lengths (0.06 Å in bond-breaking lengths) and 1.9° in bond angles. On the other hand, the potential energy surface and its gradient were more accurately described by the hybrid density functional BHandH, closely followed by mPW1N, mPW1K, and mPWB1K. The barrier height and energy of reaction were better reproduced by the BMK and M06-2X functionals (deviations of 0.17 and 0.07 kcal·mol(-1), respectively) for a set of 10 Pople's basis sets. MN12-SX and M11-L showed very good results for the widely used 6-311++G(2d,2p) basis set, with deviations of 0.02 and 0.05 kcal·mol(-1), respectively. We studied the effect of the split-valence, diffuse, and polarized functions in the activation barrier of thiol-disulfide exchange, for a set of 10 Pople's basis sets. While increasing the splitting and polarization may increase the activation barrier in approximately 1 kcal·mol(-1), diffuse functions generally contribute to decreasing it no more than 0.10 kcal·mol(-1). In general, 13 functionals provided energies within 1 kcal·mol(-1) of the reference value. The BB1K density functional is one of the best density functionals to characterize thiol-disulfide exchange reactions; however, several density functionals with modified Perdew-Wang exchange and about 40% Hartree-Fock exchange, such as mPW1K, mPW1N, and mPWB1K, show a good performance, too.
Collapse
Affiliation(s)
- Rui P P Neves
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - António J C Varandas
- Departamento de Química, and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Valencia I, Ávila-Torres Y, Barba-Behrens N, Garzón IL. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Density functional calculations of molecular structures of arsenic-binding β-domain of metallothioneins-2. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Hoffmann A, Rohrmüller M, Jesser A, dos Santos Vieira I, Schmidt WG, Herres-Pawlis S. Geometrical and optical benchmarking of copper(II) guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory (part II). J Comput Chem 2014; 35:2146-61. [PMID: 25255876 DOI: 10.1002/jcc.23740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022]
Abstract
Ground- and excited-state properties of copper(II) charge-transfer systems have been investigated starting from density-functional calculations with particular emphasis on the role of (i) the exchange and correlation functional, (ii) the basis set, (iii) solvent effects, and (iv) the treatment of dispersive interactions. Furthermore (v), the applicability of TD-DFT to excitations of copper(II) bis(chelate) charge-transfer systems is explored by performing many-body perturbation theory (GW + BSE), independent-particle approximation and ΔSCF calculations for a small model system that contains simple guanidine and imine groups. These results show that DFT and TD-DFT in particular in combination with hybrid functionals are well suited for the description of the structural and optical properties, respectively, of copper(II) bis(chelate) complexes. Furthermore, it is found an accurate theoretical geometrical description requires the use of dispersion correction with Becke-Johnson damping and triple-zeta basis sets while solvent effects are small. The hybrid functionals B3LYP and TPSSh yielded best performance. The optical description is best with B3LYP, whereby heavily mixed molecular transitions of MLCT and LLCT character are obtained which can be more easily understood using natural transition orbitals. An natural bond orbital analysis sheds light on the donor properties of the different donor functions and the intraguanidine stabilization during coordination to copper(I) and (II).
Collapse
Affiliation(s)
- Alexander Hoffmann
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Hoffmann A, Grunzke R, Herres-Pawlis S. Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. J Comput Chem 2014; 35:1943-50. [DOI: 10.1002/jcc.23706] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Alexander Hoffmann
- Department of Chemistry; Ludwig-Maximilians-Universität München, Butenandtstr. 5 - 13; 81377 München Germany
| | - Richard Grunzke
- Zentrum für Informationsdienste und Hochleistungsrechnen; Technische Universität Dresden; Zellescher Weg 12-14 01062 Dresden Germany
| | - Sonja Herres-Pawlis
- Department of Chemistry; Ludwig-Maximilians-Universität München, Butenandtstr. 5 - 13; 81377 München Germany
| |
Collapse
|
29
|
The glycation site specificity of human serum transferrin is a determinant for transferrin's functional impairment under elevated glycaemic conditions. Biochem J 2014; 461:33-42. [DOI: 10.1042/bj20140133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human serum transferrin is susceptible to modification under elevated glycaemic conditions, such as those encountered in diabetes mellitus. The study of transferrin glycation shows that key amino acid residues undergo glycation, inducing structural alterations that compromise its function as an iron-binding protein.
Collapse
|
30
|
Tsipis AC. DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds. RSC Adv 2014. [DOI: 10.1039/c4ra04921g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Highlighting the recent progress in DFT/TDDFT application to coordination chemistry of copper.
Collapse
Affiliation(s)
- Athanassios C. Tsipis
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- 451 10 Ioannina
- Greece
| |
Collapse
|
31
|
Ćendić M, Matović ZD, Deeth RJ. Molecular modeling for Cu(II)-aminopolycarboxylate complexes: Structures, conformational energies, and ligand binding affinities. J Comput Chem 2013; 34:2687-96. [DOI: 10.1002/jcc.23437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Marina Ćendić
- Department of Chemistry, Faculty of Science; University of Kragujevac; Kragujevac SRB-34000 Serbia
| | - Zoran D. Matović
- Department of Chemistry, Faculty of Science; University of Kragujevac; Kragujevac SRB-34000 Serbia
| | - Robert J. Deeth
- Department of Chemistry, Inorganic Computational Chemistry Group; University of Warwick; Coventry CV4 7AL United Kingdom
| |
Collapse
|