1
|
Ibrahim MAA, Saad SMA, Al-Fahemi JH, Mekhemer GAH, Ahmed SA, Shawky AM, Moussa NAM. External electric field effects on the σ-hole and lone-pair hole interactions of group V elements: a comparative investigation. RSC Adv 2021; 11:4022-4034. [PMID: 35424345 PMCID: PMC8694126 DOI: 10.1039/d0ra09765a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
σ-hole and lone-pair (lp) hole interactions of trivalent pnicogen-bearing (ZF3) compounds were comparatively scrutinized, for the first time, under field-free and external electric field (EEF) conditions. Conspicuously, the sizes of the σ-hole and lp-hole were increased by applying an EEF along the positive direction, while the sizes of both holes decreased through the reverse EEF direction. The MP2 energetic calculations of ZF3⋯FH/NCH complexes revealed that σ-holes exhibited more impressive interaction energies compared to the lp-holes. Remarkably, the strengths of σ-hole and lp-hole interactions evolved with the increment of the positive value of the considered EEF; i.e., the interaction energy increased as the utilized EEF value increased. Unexpectedly, under field-free conditions, nitrogen-bearing complexes showed superior strength for their lp-hole interactions than phosphorus-bearing complexes. However, the reverse picture was exhibited for the interaction energies of nitrogen- and phosphorus-bearing complexes interacting within lp-holes by applying the high values of a positively directed EEF. These results significantly demonstrate the crucial influence of EEF on the strength of σ-hole and lp-hole interactions, which in turn leads to an omnipresent enhancement for variable fields, including biological simulations and material science.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Sherif M A Saad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Jabir H Al-Fahemi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Gamal A H Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University Makkah 21955 Saudi Arabia
- Central Laboratory for Micro-analysis, Minia University Minia 61519 Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
2
|
Joshi PR, Sankaran K. P⋯N type pnicogen bonding in phosphorus trichloride–pyridine adduct: A matrix isolation infrared, DFT and ab initio study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Dong TG, Peng H, He XF, Wang X, Gao J. Hybrid Molecular Dynamics for Elucidating Cooperativity Between Halogen Bond and Water Molecules During the Interaction of p53-Y220C and the PhiKan5196 Complex. Front Chem 2020; 8:344. [PMID: 32457871 PMCID: PMC7221198 DOI: 10.3389/fchem.2020.00344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cooperativity between hydrogen and halogen bonds plays an important role in rational drug design. However, mimicking the dynamic cooperation between these bonds is a challenging issue, which has impeded the development of the halogen bond force field. In this study, the Y220C–PhiKan5196 complex of p53 protein was adopted as a model, and the functions of three water molecules that formed hydrogen bonds with halogen atoms were analyzed by the simulation method governed by the hybrid quantum mechanical/molecular mechanical molecular dynamics. A comparison with the water-free model revealed that the strength of the halogen bond in the complex was consistently stronger. This confirmed that the water molecules formed weak hydrogen bonds with the halogen atom and cooperated with the halogen atom to enhance the halogen bond. Further, it was discovered that the roles of the three water molecules were not the same. Therefore, the results obtained herein can facilitate a rational drug design. Further, this work emphasizes on the fact that, in addition to protein pockets and ligands, the role of voids should also be considered with regard to the water molecules surrounding them.
Collapse
Affiliation(s)
- Tian-Ge Dong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hui Peng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xue-Feng He
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Su P, Tang Z, Wu W. Generalized Kohn‐Sham energy decomposition analysis and its applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| | - Zhen Tang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| |
Collapse
|
5
|
Wang X, Gao J. Atomic partial charge predictions for furanoses by random forest regression with atom type symmetry function. RSC Adv 2020; 10:666-673. [PMID: 35494472 PMCID: PMC9048215 DOI: 10.1039/c9ra09337k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
Furanoses that are components for many important biomolecules have complicated conformational spaces due to the flexible ring and exo-cyclic moieties. Machine learning algorithms, which require descriptors as structural inputs, can be used to efficiently compute conformational adaptive (CA) charges to capture the electrostatic potential variations caused by the conformational changes in the molecular mechanics (MM) calculations. In the present study, we introduced atom type symmetry function (ATSF) developed based on atom centered symmetry function (ACSF) for describing conformations for furanoses, in which atoms were categorized by atom types defined by their properties or connectivity in classic molecular mechanics (MM) force field parameters to generate a suitable coordinate size. Random forest regression (RFR) models with ATSF showed improvements for predicting CA charges and dipole moments for furanoses compared to those with ACSF and atom name symmetry functions where atoms were categorized by their unique atom names. The CA charges predicted by RFR models with ATSF showed more comparable reproductions of the carbohydrate-water and carbohydrate-protein interactions computed with RESP charges individually derived from QM calculations than the ensemble-averaged atomic charge sets commonly employed in molecular mechanics force fields, suggesting that the predicted CA charges were capable of including electrostatic variations in their dynamic charge values. Improvements by ATSF showed that categorizing atoms by atom types introduced chemical structural perceptions to descriptors and produced a suitable coordinate size in ATSF to capture key structural features for furanoses. This categorizing scheme also allows ATSF to be readily adopted by other biomolecules thanks to the broad implementations of MM force fields.
Collapse
Affiliation(s)
- Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University Wuhan China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University Wuhan China
| |
Collapse
|
6
|
Zierkiewicz W, Michalczyk M, Scheiner S. Implications of monomer deformation for tetrel and pnicogen bonds. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00430g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monomer rearrangement raises the interaction energy by up to 20 kcal mol−1and intensifies its σ-hole by a factor of 1.5–2.9.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
7
|
Sruthi PK, Ramanathan N, Sarkar S, Sundararajan K. Pentavalent phosphorus as a unique phosphorus donor in POCl3 homodimer and POCl3–H2O heterodimer: matrix isolation infrared spectroscopic and computational studies. Phys Chem Chem Phys 2018; 20:22058-22075. [DOI: 10.1039/c8cp03937b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphorus, an important element among the pnicogen group, opens up avenues for experimental and computational explorations of its interaction in a variety of compounds.
Collapse
Affiliation(s)
- P. K. Sruthi
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - N. Ramanathan
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - Shubhra Sarkar
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - K. Sundararajan
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| |
Collapse
|
8
|
Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. J Mol Model 2017; 23:328. [DOI: 10.1007/s00894-017-3502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
|
9
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
10
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Modulating intramolecular P⋯N pnictogen interactions. Phys Chem Chem Phys 2016; 18:9148-60. [DOI: 10.1039/c6cp00227g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strength of P⋯N intramolecular pnictogen interactions can be modulated, enhanced or diminished upon substitution of different electron withdrawing or donor groups.
Collapse
Affiliation(s)
| | - Cristina Trujillo
- School of Chemistry
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Ibon Alkorta
- Instituto de Química Médica
- CSIC
- E-28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica
- CSIC
- E-28006 Madrid
- Spain
| |
Collapse
|
11
|
LIU YANZHI, YUAN KUN, YUAN ZHAO, ZHU YUANCHENG, ZHAO XIANG. Theoretical exploration of pnicogen bond noncovalent interactions in HCHO⋯PH2X (X=CH3, H, C6H5, F, Cl, Br, and NO2) complexes. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|