1
|
Singh BG, Upadhyaya HP. Experimental and Theoretical Studies on Reaction Kinetics, Mechanism, and Degradation of Quinoline-Based Herbicide with Hydroxyl Radical, Sulphate Radical Anion, and Hydrated Electron. Chemphyschem 2025:e2401135. [PMID: 40211964 DOI: 10.1002/cphc.202401135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
The kinetic and mechanistic studies for the reaction of hydroxyl radical (•OH), sulfate radical anion (SO 4 • - $\text{SO}_{4}^{\cdot -}$ ), and hydrated electron( e aq - ) $\left(\right. e_{\text{aq}}^{-} \left.\right)$ with quinoline-based herbicide, namely, 8-quinoline carboxylic acid (8QCA), have been performed using experimental and computational methods. Experimental studies are performed using pulse radiolysis technique at different pHs and corroborated with theoretical studies using ab initio molecular orbital calculations. At lower pH of 1, the 8QCA is protonated and reacts with •OH radical to generate transient spectrum with maxima at 340 and 420 nm. Similarly at higher pH of 9, the 8QCA is deprotonated and shows transient absorption maxima at 320 nm. At neutral pH, it exists as neutral species and reacts with •OH radical differently. Theoretically, individual rate coefficients for •OH radical addition reaction with each carbon atoms are evaluated including solvent effect and tunneling correction. Fukui index and individual rate constant determination confirm that C5 carbon atom is the most reactive site for the •OH radical addition reaction. The total rate constant evaluated theoretically and experimentally for the •OH radical reaction is equal to its diffusion-limit value. The ability of •OH radical to degrade 8QCA is found to be higher as compared toe aq - $e_{\text{aq}}^{-}$ .
Collapse
Affiliation(s)
- Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, HBNI, Trombay, Mumbai, 400 085, India
| | - Hari P Upadhyaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, HBNI, Trombay, Mumbai, 400 085, India
| |
Collapse
|
2
|
Gisbert-González J, Rodellar CG, Druce J, Ortega E, Cuenya BR, Oener SZ. Bias Dependence of the Transition State of the Hydrogen Evolution Reaction. J Am Chem Soc 2025; 147:5472-5485. [PMID: 39900519 PMCID: PMC11826909 DOI: 10.1021/jacs.4c18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
The hydrogen evolution reaction (HER) is one of the most prominent electrocatalytic reactions of green energy transition. However, the kinetics across materials and electrolyte pH and the impact of hydrogen coverage at high current densities remain poorly understood. Here, we study the HER kinetics over a large set of nanoparticle catalysts in industrially relevant acidic and alkaline membrane electrode assemblies that are only operated with pure water humidified gases. We discover distinct kinetic fingerprints between the iron triad (Fe, Ni, Co), coinage (Au, Cu, Ag), and platinum group metals (Ir, Pt, Pd, Rh). Importantly, the applied bias changes not only the activation energy (EA) but also the pre-exponential factor (A). We interpret these changes as entropic changes in the interfacial solvent that differ between acid and base and entropic changes on the surface due to a changing hydrogen coverage. Finally, we observe that anions can induce Butler-Volmer behavior for the coinage metals in acid. Our results provide a new foundation to understand HER kinetics and, more broadly, highlight the pressing need to update common understanding of basic concepts in the field of electrocatalysis.
Collapse
Affiliation(s)
| | | | - Jody Druce
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Sebastian Z. Oener
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin 14195, Germany
| |
Collapse
|
3
|
de Sousa GG, Martins JBL, Dos Santos Politi JR. Exploring Mechanism and Kinetics of 1,4-Dioxane Oxidative Degradation by OH Radical: A Computational Quantum Chemistry Investigation. J Comput Chem 2025; 46:e70018. [PMID: 39797545 DOI: 10.1002/jcc.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways. The reaction rate constants, employing Deformed Transition State Theory (d-TST), are consistently higher for axial abstraction. The preference for axial hydrogen abstraction, solvation effects on transition states, and temperature-dependent rate constants are highlighted. Furthermore, the identification of carbon-carbon orbital distortion suggests potential bond breakage. This research provides valuable insights into the reaction between 1,4-dioxane and OH radical across different solvation models and enhances the understanding of the advanced oxidative process.
Collapse
Affiliation(s)
| | - João B L Martins
- Instituto de Química, Universidade de Brasília, Brasília, Brazil
| | | |
Collapse
|
4
|
Chen S, Li J, Zhu Q, Li Z. Theoretical kinetic studies on intramolecular H-migration reactions of peroxy radicals of diethoxymethane. Phys Chem Chem Phys 2024; 26:24676-24688. [PMID: 39282693 DOI: 10.1039/d4cp02302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Diethoxymethane (DEM), a promising carbon-neutral fuel, has high reactivity at low temperatures. The intramolecular hydrogen migration reaction of the DEM peroxy radicals can be viewed as a critical step in the low temperature oxidation mechanism of DEM. In this work, multistructural transition state theory (MS-TST) was utilized to calculate the high-pressure limit rate constants of 1,5, 1,6 and 1,7 H-migration reactions for DEM peroxy radicals. In addition to the tunneling effects and anharmonic effects, the intramolecular effects, including steric hindrance, intramolecular hydrogen bonding and conformational changes in reactants and transition states, are also considered in the rate constant calculations. The calculated energy barriers and rate constants demonstrated the substantial impact of intramolecular effects on the kinetics of H-migration reactions in DEM peroxy radicals. Specifically, the distinct configurations of transition states could potentially influence the reaction kinetics. The pressure-dependent rate constants are computed using system-specific quantum RRK theory. The calculated results show that the falloff effect of 1,5 and 1,6 H-migration reactions is more pronounced than that of the 1,7 H-migration reaction. The thermodynamics and kinetics presented in this study could be instrumental in understanding the low-temperature oxidation mechanism of DEM and might prove crucial for future research on comprehensively analyzing the autoignition behavior.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Juanqin Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Quan Zhu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zerong Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Chen W, Wang K, Miao X, Zhang J, Song A, Chen X, Luo J, Ma T. Ultralow-Friction at Cryogenic Temperature Induced by Hydrogen Correlated Quantum Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400083. [PMID: 38501844 DOI: 10.1002/smll.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Temperature is one of the governing factors affecting friction of solids. Undesired high friction state has been generally reported at cryogenic temperatures due to the prohibition of thermally activated processes, following conventional Arrhenius equation. This has brought huge difficulties to lubrication at extremely low temperatures in industry. Here, the study uncovers a hydrogen-correlated sub-Arrhenius friction behavior in hydrogenated amorphous carbon (a-C:H) film at cryogenic temperatures, and a stable ultralow-friction over a wide temperature range (103-348 K) is achieved. This is attributed to hydrogen-transfer-induced mild structural ordering transformation, confirmed by machine-learning-based molecular dynamics simulations. The anomalous sub-Arrhenius temperature dependence of structural ordering transformation rate is well-described by a quantum mechanical tunneling (QMT) modified Arrhenius model, which is correlated with quantum delocalization of hydrogen in tribochemical reactions. This work reveals a hydrogen-correlated friction mechanism overcoming the Arrhenius temperature dependence and provides a new pathway for achieving ultralow friction under cryogenic conditions.
Collapse
Affiliation(s)
- Weiqi Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Kang Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi, 710065, China
| | - Xinran Miao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Jie Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aisheng Song
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Xinchun Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Dagar A, Das T, Mallojjala SC, Hirschi JS, Vetticatt MJ. Resolving Conflicting Mechanisms for Photoredox Allylic sp 3-CH Arylation Using Deuterium-Labeling and Isotope Effects. ACS Catal 2024; 14:9469-9475. [PMID: 39157726 PMCID: PMC11328950 DOI: 10.1021/acscatal.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Two conflicting mechanisms have emerged for the direct arylation of allylic C-H bonds enabled by the combined use of thiol and photoredox catalysis. In the original report (Nature, 2015, 519, 74-77), a radical coupling step-between a radical anion of an arene and an allylic radical-is proposed to be the key C-C bond-forming step. A recent mechanistic study (J. Org. Chem. 2022, 87, 223-230) has suggested that the C-C bond formation occurs via radical anion capture by the olefin followed by an H atom transfer (HAT) event to deliver the allylic C-H arylation product. Utilizing cyclohexene-4,4,5,5-d 4 as a mechanistic probe to distinguish between otherwise indistinguishable regioisomeric allylic C-H arylation products in the reaction of cyclohexene and dicyanobenzene, we establish that the radical anion capture-HAT mechanism is not operative. Furthermore, experimental k H/k D studies and DFT calculations lend strong support to the radical coupling mechanism proceeding via irreversible HAT to form the allylic radical of cyclohexene, followed by regioselectivity-determining radical coupling (for unsymmetrical olefins) and facile decyanation.
Collapse
Affiliation(s)
- Anuradha Dagar
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | - Tamal Das
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | | | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Vestal, New York 13850, United States
| |
Collapse
|
7
|
Tsallis C. Non-additive entropies and statistical mechanics at the edge of chaos: a bridge between natural and social sciences. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220293. [PMID: 37573876 DOI: 10.1098/rsta.2022.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023]
Abstract
The Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the pillars of contemporary theoretical physics. It is constructed upon the other pillars-classical, quantum, relativistic mechanics and Maxwell equations for electromagnetism-and its foundations are grounded on the optimization of the BG (additive) entropic functional [Formula: see text]. Its use in the realm of classical mechanics is legitimate for vast classes of nonlinear dynamical systems under the assumption that the maximal Lyapunov exponent is positive (currently referred to as strong chaos), and its validity has been experimentally verified in countless situations. It fails however when the maximal Lyapunov exponent vanishes (referred to as weak chaos), which is virtually always the case with complex natural, artificial and social systems. To overcome this type of weakness of the BG theory, a generalization was proposed in 1988 grounded on the non-additive entropic functional [Formula: see text]. The index [Formula: see text] and related ones are to be calculated, whenever mathematically tractable, from first principles and reflect the specific class of weak chaos. We review here the basics of this generalization and illustrate its validity with selected examples aiming to bridge natural and social sciences. This article is part of the theme issue 'Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)'.
Collapse
Affiliation(s)
- Constantino Tsallis
- Centro Brasileiro de Pesquisas Fisicas National Institute of Science and Technology of Complex Systems, Rua Xavier Sigaud 150, 22290- Rio de Janeiro, Brazil
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 87501 NM, USA
- Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria
| |
Collapse
|
8
|
Theoretical studies on the mechanism, kinetics, and degradation pathways of auxin mimic herbicides by •OH radical in aqueous media. Struct Chem 2022. [DOI: 10.1007/s11224-022-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sanches-Neto FO, Ramos B, Lastre-Acosta AM, Teixeira ACSC, Carvalho-Silva VH. Aqueous picloram degradation by hydroxyl radicals: Unveiling mechanism, kinetics, and ecotoxicity through experimental and theoretical approaches. CHEMOSPHERE 2021; 278:130401. [PMID: 33839382 DOI: 10.1016/j.chemosphere.2021.130401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are chemical compounds widely used to combat pests in crops, and they thus play a key role in agricultural production. However, due to their persistence in aquatic environments, even at low concentrations, their use has been considered an environmental problem and caused concern regarding the adverse effects on human health. This paper reports, for the first time, the mechanisms, kinetics, and an evaluation of the toxicity of picloram degradation initiated by OH radicals in the aqueous environment using quantum chemistry and computational toxicology calculations. The rate constants are calculated using a combination of formulations derived from the Transition State Theory in a realistic temperature range (250-310 K). The results indicate that the two favorable pathways (R1 and R5) of OH -based reactions occur by addition to the pyridine ring. The calculated rate constant at 298 K is compared with the overall second-order reaction rate constant, quantified herein experimentally via the competition kinetics method and data available in the literature showing an excellent agreement. The toxicity assessment and a photolysis study provide important information: i) picloram and the majority of degradation products are estimated as harmful; however, ii) these compounds can suffer photolysis in sunlight. The results of the present study can help understand the mechanism of picloram, also providing important clues regarding risk assessment in aquatic environments as well as novel experimental information.
Collapse
Affiliation(s)
- Flávio O Sanches-Neto
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil.
| | - Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508-010, Brazil
| | - Arlen M Lastre-Acosta
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508-010, Brazil
| | - Antonio Carlos S C Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508-010, Brazil
| | - Valter H Carvalho-Silva
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil; Modeling of Physical and Chemical Transformations Division, Theoretical and Structural Chemistry Group, Research and Postgraduate Center, Goiás State University, 75132-903, Anápolis, Brazil.
| |
Collapse
|
10
|
Coutinho ND, Machado HG, Carvalho-Silva VH, da Silva WA. Topography of the free energy landscape of Claisen-Schmidt condensation: solvent and temperature effects on the rate-controlling step. Phys Chem Chem Phys 2021; 23:6738-6745. [PMID: 33710206 DOI: 10.1039/d0cp05659f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have found that hydroxide elimination and the C[double bond, length as m-dash]C bond formation step in base-promoted aldol condensation have a strong influence on the overall rate of the reaction, in contrast to the well-accepted first enolization or C-C bond formation step. Here, applying theoretical models to the prototypical reaction of chalcone formation, the complete free energy profile of Claisen-Schmidt condensation is assessed, revealing how a protic solvent and a slight increase in temperature can induce the second enolization as the rate-controlling step (RCS). It is also observed: i) the nonexistence of a step with a much higher energetic barrier than the others, making the concept of RCS debatable; and ii) that the overall inverse kinetic isotopic effect does not exclude second enolization as a RCS in protic continuum medium. We expect that these results can expand the understanding of the decisive role of physicochemical factors on the choose of the RCS in the aldol condensation.
Collapse
Affiliation(s)
- Nayara Dantas Coutinho
- Laboratory of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil.
| | | | | | | |
Collapse
|
11
|
Burke AD, Bowman MC, Turney JM, Schaefer HF. Energetics and kinetics of various cyano radical hydrogen abstractions. Phys Chem Chem Phys 2021; 23:3389-3400. [PMID: 33506852 DOI: 10.1039/d0cp06228f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyano radical (CN) is an abundant, open-shell molecule found in a variety of environments, including the atmosphere, the interstellar medium and combustion processes. In these environments, it often reacts with small, closed-shell molecules via hydrogen abstraction. Both carbon and nitrogen atoms of the cyano radical are reactive sites, however the carbon is more reactive with reaction barrier heights generally between 2-15 kcal mol-1 lower than those of the analogous nitrogen. The CN + HX → HCN/HNC + X, with X = H, CH3, NH2, OH, F, SiH3, PH2, SH, Cl, C2H, CN reactions have been studied at a high-level of theory, including CCSD(T)-F12a. Furthermore, kinetics were obtained over the 100-1000 K temperature range, showing excellent agreement with those rate constants that have been determined experimentally.
Collapse
Affiliation(s)
- Alexandra D Burke
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
12
|
Sodre ER, Guido BC, de Souza PEN, Machado DFS, Carvalho-Silva VH, Chaker JA, Gatto CC, Correa JR, Fernandes TDA, Neto BAD. Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. J Org Chem 2020; 85:12614-12634. [PMID: 32876447 DOI: 10.1021/acs.joc.0c01805] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.
Collapse
Affiliation(s)
- Elaine R Sodre
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Bruna C Guido
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Paulo E N de Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Valter H Carvalho-Silva
- Divisão de Modelagem de Transformações Físicas e Químicas, Grupo de Química Teo'rica e Estrutural de Ana'polis, Centro de Pesquisa e Pos-Graduação, Universidade Estadual de Goia's,, Ana'polis, Goia's 75001-970, Brazil
| | - Juliano A Chaker
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Claudia C Gatto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Talita de A Fernandes
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| |
Collapse
|
13
|
Rosa ACP, Cruz C, Santana WS, Brito E, Moret MA. Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids. Phys Rev E 2020; 101:042131. [PMID: 32422727 DOI: 10.1103/physreve.101.042131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Characterization of the non-Arrhenius behavior of glass-forming liquids is a broad avenue for research toward the understanding of the formation mechanisms of noncrystalline materials. In this context, this paper explores the main properties of the viscosity of glass-forming systems, considering super-Arrhenius diffusive processes. We establish the viscous activation energy as a function of the temperature, measure the degree of fragility of the system, and characterize the fragile-to-strong transition through the standard Angell's plot. Our results show that the non-Arrhenius behavior observed in fragile liquids can be understood through the non-Markovian dynamics that characterize the diffusive processes of these systems. Moreover, the fragile-to-strong transition corresponds to a change in the spatiotemporal range of correlations during the glass transition process.
Collapse
Affiliation(s)
- A C P Rosa
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - C Cruz
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - W S Santana
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - E Brito
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - M A Moret
- Programa de Modelagem Computacional-SENAI-CIMATEC, 41650-010 Salvador, Bahia, Brazil.,Universidade do Estado da Bahia (UNEB), 41150-000 Salvador, Bahia, Brazil
| |
Collapse
|
14
|
From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25092098. [PMID: 32365840 PMCID: PMC7248839 DOI: 10.3390/molecules25092098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots (super-Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman’s theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of “transitivity”, a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, sub-Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.
Collapse
|
15
|
Ivanova B, Spiteller M. 3D structural analysis of isomers of benzaldehydes and benzoic acids and their base catalysed C–C coupled derivatives under electrospray ionization conditions – mass spectrometric stochastic dynamic and quantum chemical approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Sanches-Neto FO, Coutinho ND, Palazzetti F, Carvalho-Silva VH. Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects. Struct Chem 2019. [DOI: 10.1007/s11224-019-01437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Rosa Junior ACP, Cruz C, Santana WS, Moret MA. Characterization of the non-Arrhenius behavior of supercooled liquids by modeling nonadditive stochastic systems. Phys Rev E 2019; 100:022139. [PMID: 31574742 DOI: 10.1103/physreve.100.022139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/07/2022]
Abstract
The characterization of the formation mechanisms of amorphous solids is a large avenue for research, since understanding its non-Arrhenius behavior is challenging to overcome. In this context, we present one path toward modeling the diffusive processes in supercooled liquids near glass transition through a class of nonhomogeneous continuity equations, providing a consistent theoretical basis for the physical interpretation of its non-Arrhenius behavior. More precisely, we obtain the generalized drag and diffusion coefficients that allow us to model a wide range of non-Arrhenius processes. This provides a reliable measurement of the degree of fragility of the system and an estimation of the fragile-to-strong transition in glass-forming liquids, as well as a generalized Stokes-Einstein equation, leading to a better understanding of the classical and quantum effects on the dynamics of nonadditive stochastic systems.
Collapse
Affiliation(s)
- A C P Rosa Junior
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - C Cruz
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - W S Santana
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - M A Moret
- Programa de Modelagem Computacional-SENAI-CIMATEC, 41650-010 Salvador, Bahia, Brazil.,Universidade do Estado da Bahia (UNEB), 41150-000 Salvador, Bahia, Brazil
| |
Collapse
|
18
|
Machado HG, Sanches-Neto FO, Coutinho ND, Mundim KC, Palazzetti F, Carvalho-Silva VH. "Transitivity": A Code for Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena. Molecules 2019; 24:E3478. [PMID: 31557893 PMCID: PMC6803931 DOI: 10.3390/molecules24193478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022] Open
Abstract
The Transitivity function, defined in terms of the reciprocal of the apparent activation energy, measures the propensity for a reaction to proceed and can provide a tool for implementing phenomenological kinetic models. Applications to systems which deviate from the Arrhenius law at low temperature encouraged the development of a user-friendly graphical interface for estimating the kinetic and thermodynamic parameters of physical and chemical processes. Here, we document the Transitivity code, written in Python, a free open-source code compatible with Windows, Linux and macOS platforms. Procedures are made available to evaluate the phenomenology of the temperature dependence of rate constants for processes from the Arrhenius and Transitivity plots. Reaction rate constants can be calculated by the traditional Transition-State Theory using a set of one-dimensional tunneling corrections (Bell (1935), Bell (1958), Skodje and Truhlar and, in particular, the deformed ( d -TST) approach). To account for the solvent effect on reaction rate constant, implementation is given of the Kramers and of Collins-Kimball formulations. An input file generator is provided to run various molecular dynamics approaches in CPMD code. Examples are worked out and made available for testing. The novelty of this code is its general scope and particular exploit of d -formulations to cope with non-Arrhenius behavior at low temperatures, a topic which is the focus of recent intense investigations. We expect that this code serves as a quick and practical tool for data documentation from electronic structure calculations: It presents a very intuitive graphical interface which we believe to provide an excellent working tool for researchers and as courseware to teach statistical thermodynamics, thermochemistry, kinetics, and related areas.
Collapse
Affiliation(s)
- Hugo G Machado
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Flávio O Sanches-Neto
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Nayara D Coutinho
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - Kleber C Mundim
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - Valter H Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| |
Collapse
|
19
|
Nucleophilic substitution vs elimination reaction of bisulfide ions with substituted methanes: exploration of chiral selectivity by stereodirectional first-principles dynamics and transition state theory. J Mol Model 2019; 25:227. [PMID: 31317347 DOI: 10.1007/s00894-019-4126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Control of molecular orientation is emerging as crucial for the characterization of the stereodynamics of kinetics processes beyond structural stereochemistry. The special role played in chiral discrimination phenomena has been particularly emphasized by Aquilanti and collaborators after their extensive probes of experimental control of molecular alignment and orientation. In this work, the manifestation of the Aquilanti mechanism has been demonstrated for the first time in first-principles molecular dynamics simulations: stationary points characterized on potential energy surfaces have been calculated for the study of chemical reactions occurring between the bisulfide anion HS- and oriented prototypical chiral molecules CHFXY (where X = CH3 or CN and Y = Cl or I). The important reaction channels are those corresponding to bimolecular nucleophilic substitution (SN2) and to bimolecular elimination (E2): their relative role has been assessed and alternative pathways due to the mirror forms of the oriented chiral molecule are revealed by the different reactivity of the two enantiomers of CHFCNI in SN2 reaction.
Collapse
|
20
|
Carvalho-Silva VH, Coutinho ND, Aquilanti V. Temperature Dependence of Rate Processes Beyond Arrhenius and Eyring: Activation and Transitivity. Front Chem 2019; 7:380. [PMID: 31192196 PMCID: PMC6548831 DOI: 10.3389/fchem.2019.00380] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 12/02/2022] Open
Abstract
Advances in the understanding of the dependence of reaction rates from temperature, as motivated from progress in experiments and theoretical tools (e. g., molecular dynamics), are needed for the modeling of extreme environmental conditions (e.g., in astrochemistry and in the chemistry of plasmas). While investigating statistical mechanics perspectives (Aquilanti et al., 2017b, 2018), the concept of transitivity was introduced as a measure for the propensity for a reaction to occur. The Transitivity plot is here defined as the reciprocal of the apparent activation energy vs. reciprocal absolute temperature. Since the transitivity function regulates transit in physicochemical transformations, not necessarily involving reference to transition-state hypothesis of Eyring, an extended version is here proposed to cope with general types of transformations. The transitivity plot permits a representation where deviations from Arrhenius behavior are given a geometrical meaning and make explicit a positive or negative linear dependence of transitivity for sub- and super-Arrhenius cases, respectively. To first-order in reciprocal temperature, the transitivity function models deviations from linearity in Arrhenius plots as originally proposed by Aquilanti and Mundim: when deviations are increasingly larger, other phenomenological formulas, such as Vogel-Fulcher-Tammann, Nakamura-Takayanagi-Sato, and Aquilanti-Sanches-Coutinho-Carvalho are here rediscussed from the transitivity concept perspective and with in a general context. Emphasized is the interest of introducing into this context modifications to a very successful tool of theoretical kinetics, Eyring's Transition-State Theory: considering the behavior of the transitivity function at low temperatures, in order to describe deviation from Arrhenius behavior under the quantum tunneling regime, a "d-TST" formulation was previously introduced (Carvalho-Silva et al., 2017). In this paper, a special attention is dedicated to a derivation of the temperature dependence of viscosity, making explicit reference to feature of the transitivity function, which in this case generally exhibits a super-Arrhenius behavior. This is of relevance also for advantages of using the transitivity function for diffusion-controlled phenomena.
Collapse
Affiliation(s)
- Valter H. Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Nayara D. Coutinho
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
21
|
Só YADO, Neto PHDO, de Macedo LGM, Gargano R. Theoretical Investigation on H 2O 2-Ng (He, Ne, Ar, Kr, Xe, and Rn) Complexes Suitable for Stereodynamics: Interactions and Thermal Chiral Rate Consequences. Front Chem 2019; 6:671. [PMID: 30713840 PMCID: PMC6345723 DOI: 10.3389/fchem.2018.00671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/24/2018] [Indexed: 11/29/2022] Open
Abstract
Although molecular collisions of noble gases (Ng) can be theoretically used to distinguish between the enantiomers of hydrogen peroxide - H2O2 (HP), little is known about the effects of HP-Ng interactions on the chiral rate. In this work, the chiral rate as a function of temperature (CRT) between enantiomeric conformations of HP and Ng (Ng=He, Ne, Ar, Kr, Xe, and Rn) are presented at MP2(full)/aug-cc-pVTZ level of theory through a fully basis set superposition error (BSSE) corrected potential energy surface. The results show that: (a) the CRT is highly affected even at a small decrease in the height of trans-barrier; (b) its smallest values occur with Ne for all temperatures between 100 and 4,000 K; (c) that the decrease of CRT shows an inverse correlation with respect to the average valence electron energy of the Ng and (d) Ne and He may be the noble gases more suitable for study the oriented collision dynamics of HP. In addition to binding energies, the electron density ρ and its Laplacian ∇2ρ topological analyses were also performed within the atoms in molecules (AIM) theory in order to determine the nature of the HP-Ng interactions. The results of this work provide a more complete foundation on experiments to study HP's chirality using Ng in crossed molecular beams without a light source.
Collapse
Affiliation(s)
| | | | | | - Ricardo Gargano
- Institute of Physics, University of Brasília, Brasília, Brazil
| |
Collapse
|
22
|
The transition state of the automerization reaction of cyclobutadiene: A theoretical approach using the Restricted Active Space Self Consistent Field method. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Coutinho ND, Sanches-Neto FO, Carvalho-Silva VH, de Oliveira HCB, Ribeiro LA, Aquilanti V. Kinetics of the OH+HCl→H 2 O+Cl reaction: Rate determining roles of stereodynamics and roaming and of quantum tunneling. J Comput Chem 2018; 39:2508-2516. [PMID: 30365178 DOI: 10.1002/jcc.25597] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
The OH + HCl → H2 O + Cl reaction is one of the most studied four-body systems, extensively investigated by both experimental and theoretical approaches. Here, as a continuation of our previous work on the OH + HBr and OH + HI reactions, which manifest an anti-Arrhenius behavior that was explained by stereodynamic and roaming effects, we extend the strategy to understand the transition to the sub-Arrhenius behavior occurring for the HCl case. As previously, we perform first-principles on-the-fly Born-Oppenheimer molecular dynamics calculations, thermalized at four temperatures (50, 200, 350, and 500 K), but this time we also apply a high-level transition-state-theory, modified to account for tunneling conditions. We find that the theoretical rate constants calculated with Bell tunneling corrections are in good agreement with extensive experimental data available for this reaction in the ample temperature range: (i) simulations show that the roles of molecular orientation in promoting this reaction and of roaming in finding the favorable path are minor than in the HBr and HI cases, and (ii) dominating is the effect of quantum mechanical penetration through the energy barrier along the reaction path on the potential energy surface. The discussion of these results provides clarification of the origin on different non-Arrhenius mechanisms observed along this series of reactions. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nayara D Coutinho
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| | - Flavio O Sanches-Neto
- Grupo de Química Teórica e Estrutural de Anápolis, Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, 75001-970, Anápolis, GO, Brazil
| | | | - Heibbe C B de Oliveira
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| | - Luiz A Ribeiro
- Institute of Physics, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.,Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Area dela Ricerca di Roma Tor Vergata, Via del Fosso del Cavaliere, 00133, Rome, Italy
| |
Collapse
|
24
|
From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0749-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
de Carvalho EFV, Roberto-Neto O. Effects of multidimensional tunneling in the kinetics of hydrogen abstraction reactions of O ( 3 P) with CH 3 OCHO. J Comput Chem 2018; 39:1424-1432. [PMID: 29607518 DOI: 10.1002/jcc.25211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 11/11/2022]
Abstract
Quantum tunneling paths are important in reactions when there is a significant component of hydrogenic motion along the potential energy surface. In this study, variational transition state with multidimensional tunneling corrections are employed in the calculations of the thermal rate constants for hydrogen abstraction from the cis-CH3 OCHO by O (3 P) giving CH3 OCO + OH (R1) and CH2 OCHO + OH (R2). The structures and electronic energies are computed with the M06-2X method. Benchmark calculations with the CBSD-T approach give an enthalpy of reaction at 0 K for R1 (-2.8 kcal/mol) and R2 (-2.5 kcal/mol) which are in good agreement with the experiment, i.e. -2.61 and -1.81 kcal/mol. At the low and intermediate values of temperatures, small- and large-curvature tunneling dominate the kinetics of R1, which is the dominant path over the range of temperature from 250 to 1200 K. This study shows the importance of multidimensional tunneling corrections for both R1 and R2, for which the total rate constant at 298 K calculated with the CVT/μOMT method is 8.2 × 10-15 cm3 molecule-1 s-1 which agrees well with experiment value of 9.3 × 10-15 cm3 molecule-1 s-1 (Mori, Bull. Inst. Chem. Res. 1981, 59, 116). © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E F V de Carvalho
- Departamento de Física, Universidade Federal do Maranhão, São Luís, Maranhão, 65085-580, Brazil
| | - O Roberto-Neto
- Divisão de Aerotermodinâmica e Hipersônica, Instituto de Estudos Avançados, São José dos Campos, São Paulo, 12228-001, Brazil
| |
Collapse
|
26
|
Sanches-Neto FO, Coutinho ND, Carvalho-Silva VH. A novel assessment of the role of the methyl radical and water formation channel in the CH 3OH + H reaction. Phys Chem Chem Phys 2018; 19:24467-24477. [PMID: 28890979 DOI: 10.1039/c7cp03806b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of experimental and theoretical papers accounted almost exclusively for two channels in the reaction of atomic hydrogen with methanol: H-abstraction from the methyl (R1) and hydroxyl (R2) functional groups. Recently, several astrochemical studies claimed the importance of another channel for this reaction, which is crucial for kinetic simulations related to the abundance of molecular constituents in planetary atmospheres: methyl radical and water formation (R3 channel). Here, motivated by the lack of and uncertainties about the experimental and theoretical kinetic rate constants for the third channel, we developed first-principles Car-Parrinello molecular dynamics thermalized at two significant temperatures - 300 and 2500 K. Furthermore, the kinetic rate constant of all three channels was calculated using a high-level deformed-transition state theory (d-TST) at a benchmark electronic structure level. d-TST is shown to be suitable for describing the overall rate constant for the CH3OH + H reaction (an archetype of the moderate tunnelling regime) with the precision required for practical applications. Considering the experimental ratios at 1000 K, kR1/kR2 ≈ 0.84 and kR1/kR3 ≈ 15-40, we provided a better estimate when compared with previous theoretical work: 7.47 and 637, respectively. The combination of these procedures explicitly demonstrates the role of the third channel in a significant range of temperatures and indicates its importance considering the thermodynamic control to estimate methyl radical and water formation. We expect that these results can help to shed new light on the fundamental kinetic rate equations for the CH3OH + H reaction.
Collapse
Affiliation(s)
- Flávio O Sanches-Neto
- Grupo de Química Teórica de Anápolis Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Caixa Postal 459, 75001-970, Anápolis, GO, Brazil.
| | | | | |
Collapse
|
27
|
Ivanova B, Spiteller M. Quantitative collision induced mass spectrometry of substituted piperazines – A correlative analysis between theory and experiment. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
A novel analytical potential function for dicationic diatomic molecular systems based on deformed exponential function. J Mol Model 2017; 23:182. [PMID: 28488189 DOI: 10.1007/s00894-017-3339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
In this paper, we propose a new alternative analytical function aiming to better describe the potential energy curves of the doubly charged diatomic molecules. To achieve this goal, we modified an existing potential function in the literature to describe dicationic diatomic molecules using the deformed exponential function. We generated the potential energy curve of the testing group of dicationic diatomic molecules [Formula: see text], BH2+, [Formula: see text] and NH2+ by means of the CCSD(T)/aug-cc-pVQZ level of theory. To validate this new function, we also calculated the spectroscopic constants and the rovibrational spectra for the electronic state [Formula: see text]of the [Formula: see text] and [Formula: see text] systems using the Dunham and discrete variable representation methods. For BH2+ and NH2+ molecules, despite exhibiting a local minimum in the potential energy curve, no vibrational levels are supported, so the spectroscopic constants for these poorly bound systems are invalidated. The fitting accuracy had a better performance over the original potential for describing dicationic diatomic systems, considering that the discrete variable representation method resulted in a similar vibrational structure described in the literature. This fact can be explained due to the deformed function's flexibility.
Collapse
|
29
|
Aquilanti V, Coutinho ND, Carvalho-Silva VH. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0201. [PMID: 28320904 PMCID: PMC5360900 DOI: 10.1098/rsta.2016.0201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 05/14/2023]
Abstract
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Instituto de Física, Universidade Federal da Bahia, 40210 Salvador, Brazil
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Rome, Italy
| | - Nayara Dantas Coutinho
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil
| | - Valter Henrique Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, 75001-970 Anápolis, GO, Brazil
| |
Collapse
|