1
|
Neese F. A perspective on the future of quantum chemical software: the example of the ORCA program package. Faraday Discuss 2024; 254:295-314. [PMID: 39051881 DOI: 10.1039/d4fd00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The field of computational chemistry has made an impressive impact on contemporary chemical research. In order to carry out computational studies on actual systems, sophisticated software is required in form of large-scale quantum chemical program packages. Given the enormous diversity and complexity of the methods that need to be implementation in such packages, it is evident that these software pieces are very large (millions of code lines) and extremely complex. Most of the packages in widespread use by the computational chemistry community have had a development history of decades. Given the rapid progress in the hardware and a lack of resources (time, workforce, money), it is not possible to keep redesigning these program packages from scratch in order to keep up with the ever more quickly shifting hardware landscape. In this perspective, some aspects of the multitude of challenges that the developer community faces are discussed. While the task at hand - to ensure that quantum chemical program packages can keep evolving and make best use of the available hardware - is daunting, there are also new evolving opportunities. The problems and potential cures are discussed with the example of the ORCA package that has been developed in our research group.
Collapse
Affiliation(s)
- Frank Neese
- Department of Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
2
|
de Moura CEV, Sokolov AY. Efficient Spin-Adapted Implementation of Multireference Algebraic Diagrammatic Construction Theory. I. Core-Ionized States and X-ray Photoelectron Spectra. J Phys Chem A 2024; 128:5816-5831. [PMID: 38962857 DOI: 10.1021/acs.jpca.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We present an efficient implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulating core-ionized states and X-ray photoelectron spectra (XPS). Taking advantage of spin adaptation, automatic code generation, and density fitting, our implementation can perform calculations for molecules with more than 1500 molecular orbitals, incorporating static and dynamic correlation in the ground and excited electronic states. We demonstrate the capabilities of MR-ADC methods by simulating the XPS spectra of substituted ferrocene complexes and azobenzene isomers. For the ground electronic states of these molecules, the XPS spectra computed using the extended second-order MR-ADC method (MR-ADC(2)-X) are in a very good agreement with available experimental results. We further show that MR-ADC can be used as a tool for interpreting or predicting the results of time-resolved XPS measurements by simulating the core ionization spectra of azobenzene along its photoisomerization, including the XPS signatures of excited states and the minimum energy conical intersection. This work is the first in a series of publications reporting the efficient implementations of MR-ADC methods.
Collapse
Affiliation(s)
- Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Lechner MH, Papadopoulos A, Sivalingam K, Auer AA, Koslowski A, Becker U, Wennmohs F, Neese F. Code generation in ORCA: progress, efficiency and tight integration. Phys Chem Chem Phys 2024; 26:15205-15220. [PMID: 38767596 DOI: 10.1039/d4cp00444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An improved version of ORCA's automated generator environment (ORCA-AGE II) is presented. The algorithmic improvements and the move to C++ as the programming language lead to a performance gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain. Additionally, the restructured modular design allows for far more complex code engines to be implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code repository while all actual high-level code is generated automatically, inserted at the appropriate place in the host program before it is compiled and linked together with the hand written code parts. This construction ensures longevity and uniform code quality. Furthermore the new developments allow ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of contributing tensor contractions. We also discuss the automated implementation of nuclear gradients for arbitrary theories. All these improvements enable the implementation of theories that are too complex for the human mind and also reduce development times by orders of magnitude. We hope that this work enables researchers to concentrate on the intellectual content of the theories they develop rather than be concerned with technical details of the implementation.
Collapse
Affiliation(s)
- Marvin H Lechner
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Anastasios Papadopoulos
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Kantharuban Sivalingam
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Alexander A Auer
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Axel Koslowski
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Ute Becker
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Wennmohs
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
4
|
Vijayakumar S, Wilmouth DM. Kinetics of the Reactions of Chlorinated Very Short-Lived Substances (VSLSs) with Chlorine Atoms. J Phys Chem A 2023; 127:7284-7294. [PMID: 37595126 DOI: 10.1021/acs.jpca.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Chlorinated very short-lived substances (VSLSs), which are not controlled by the Montreal Protocol, are of current concern with regard to recovery of stratospheric ozone. Further study is needed on the temperature dependences of chlorinated VSLSs relevant to atmospheric conditions. Here, the kinetics of chlorinated VSLSs, such as chloroform (CHCl3), dichloromethane (CH2Cl2), dichloroethane (CH2ClCH2Cl), and trichloroethene (C2HCl3) reacting with chlorine atoms, were investigated between 180 and 400 K, expanding the range of temperatures relative to previous studies. RRKM/Master Equation and Canonical Variational Transition State Theory were utilized to calculate the rate coefficients using the MultiWell suite of programs. CCSD(T), QCISD(T), and M062X with aug-cc-pV(T+d)Z levels of theory were used to calculate the kinetic parameters. Arrhenius equations obtained from fits to the calculated rate coefficients are k1 = (2.66 ± 0.7) × 10-12 exp [(-927 ± 131)/T] cm3 molecule-1 s-1, k2 = (8.99 ± 0.3) × 10-12 exp [(-957 ± 19)/T] cm3 molecule-1 s-1, k3 = (1.51 ± 0.16) × 10-11 exp [(-714 ± 54)/T] cm3 molecule-1 s-1, and k4 = (9.17 ± 1.8) × 10-12 exp [(612 ± 101)/T] cm3 molecule-1 s-1 for the reactions of CHCl3, CH2Cl2, CH2ClCH2Cl, and C2HCl3 with Cl atoms, respectively. The rate coefficients for the reactions of chlorinated VSLSs with Cl atoms from this study are compared with the most recent recommended values from the NASA/JPL and IUPAC evaluations and with literature values. The reactivity trends of the reactions are discussed.
Collapse
Affiliation(s)
- S Vijayakumar
- Harvard John A. Paulson School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 United States
| | - David M Wilmouth
- Harvard John A. Paulson School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 United States
| |
Collapse
|
5
|
Li PY, Han CZ, Gong B, Liu D, Wang JP. TDDFT study on the ESPT and ICT mechanism of a bifunctional fluorescent probe for detecting fluoride and sulphite. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Evangelista FA. Automatic derivation of many-body theories based on general Fermi vacua. J Chem Phys 2022; 157:064111. [PMID: 35963725 DOI: 10.1063/5.0097858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper describes Wick&d, an implementation of the algebra of second-quantized operators normal ordered with respect to general correlated references and the corresponding Wick theorem [D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997) and W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997)]. Wick&d employs a compact representation of operators and a backtracking algorithm to efficiently evaluate Wick contractions. Since Wick&d can handle both fully and partially contracted terms, it can be applied to both projective and Fock-space many-body formalisms. To demonstrate the usefulness of Wick&d, we use it to evaluate the single-reference coupled cluster equations up to octuple excitations and report an automated derivation and implementation of the second-order driven similarity renormalization group multireference perturbation theory.
Collapse
Affiliation(s)
- Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Hydrogen bond-induced planarity and ESPT Process: A theoretical insight into the sensing mechanism of a fluorescent probe for hypochlorous acid. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Neese F. Software update: The
ORCA
program system—Version 5.0. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1606] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
9
|
Bo G, Bo-Yu L, Shou-Liang Y, Yue-Hua L, Guang-Yue L. A time-dependent density functional theory study of a fluorescent probe to detect hydroxyl radicals: Inhibiting the twisted intramolecular charge-transfer process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119928. [PMID: 33993026 DOI: 10.1016/j.saa.2021.119928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Due to the relevance to excited-state processes, sensing mechanisms of fluorescent probes were difficult to study directly by experimental methods. This work investigated theoretically the sensing mechanism of a reported bifunctional fluorescent probe to detect intracellular hydroxyl radicals and their environmental viscosity (J. Am. Chem. Soc. 2019, 141, 18301). Calculations were performed at the B3P86/TZVP/SMD level using density functional theory and time-dependent density functional theory. The transition from the ground-state (S0) to the first singlet excited state (S1) was calculated to have the largest oscillation strength for the probe. The wavelength that corresponded to the S0-S1 vertical excitation energy (427 nm) agreed well with the maximum absorption band at 400 nm in the ultraviolet-visible spectra. Theoretical results showed that the probe had two distinct geometries in the S0 and S1 states, respectively. This difference was caused by the different distributions of frontier molecular orbitals that were involved in the S0-S1 transition and corresponds to a twisted intramolecular charge transfer. The S1-state potential energy curve of the probe molecule confirmed that the twisted intramolecular charge transfer could proceed spontaneously with a potential barrier of only 12.20 kJ/mol. This result provided an irradiative approach for the probe molecule to dissipate the S1-state energy, which explained its fluorescence quenching. In contrast, the hydroxyl oxidation reaction changed frontier molecular orbitals of the probe molecule, which made its S1 state a local S1 state with a strong fluorescence emission. Precisely due to the mechanism, the hydroxyl radicals could be detected by changes in the fluorescence signal of the probe molecule.
Collapse
Affiliation(s)
- Gong Bo
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China; Yi Sheng College, North China University of Science and Technology, Tangshan 063210, PR China
| | - Li Bo-Yu
- College of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yin Shou-Liang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, PR China
| | - Li Yue-Hua
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Li Guang-Yue
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
10
|
Affiliation(s)
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
11
|
Guo Y, Sivalingam K, Kollmar C, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J Chem Phys 2021; 154:214113. [PMID: 34240984 DOI: 10.1063/5.0051218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Paper I, the performances of pre-screening (PS), extended PS (EPS), and cumulant (CU) approximations to the fourth-order density matrix were examined in the context of second-order N-electron valence state perturbation theory (NEVPT2). It has been found that the CU, PS, and even EPS approximations with loose thresholds may introduce intruder states. In the present work, the origin of these "false intruder" states introduced by approximated density matrices is discussed. Canonical NEVPT2 implementations employ a rank reduction trick. By analyzing its residual error, we find that the omission of the rank reduction leads to a more stable multireference perturbation theory for incomplete active space reference wave functions. Such a full rank (FR)-NEVPT2 formulation is equivalent to the conventional NEVPT2 method for the complete active space self-consistent field/complete active space configuration interaction reference wave function. A major drawback of the FR-NEVPT2 formulation is the necessity of the fifth-order density matrix. To avoid the construction of the high-order density matrices, the combination of the FR-NEVPT2 with the CU approximation is studied. However, we find that the CU approximation remains problematic as it still introduces intruder states. The question of how to robustly and efficiently perform internally contracted multireference perturbation theories with approximate densities remains a challenging field of investigation.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
13
|
Saitow M, Yanai T. A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. J Chem Phys 2020; 152:114111. [PMID: 32199413 DOI: 10.1063/1.5142622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Complete-Active Space Second-order Perturbation Theory (CASPT2) has been one of the most widely-used methods for reliably calculating electronic structures of multireference systems. Because of its lowest level treatment of dynamic correlation, it has a high computational feasibility; however, its accuracy in some cases falls short of needs. Here, as a simple yet higher-order alternative, we introduce a hybrid theory of the CASPT2 and a multireference variant of the Coupled-Electron Pair Approximation (CEPA), which is a class of high level correlation theory. A central feature of our theory (CEPT2) is to use the two underlying theories for describing different divisions of correlation components based on the full internal contraction framework. The external components, which usually give a major contribution to the dynamic correlation, are intensively described using the CEPA Ansatz, while the rests are treated at the CASPT2 level. Furthermore, to drastically reduce the computational demands, we have incorporated the pair-natural orbital (PNO) method into our multireference implementations. This development, thus, requires highly complex derivations and coding, while it has been largely facilitated with an automatic expression and code generation technique. To highlight the accuracy of the CEPT2 approach and to assess the errors caused by the PNO truncation, benchmark calculations are shown on small- to medium-size molecules, illustrating the high accuracy of the present CEPT2 model. By tightening the truncation thresholds, the PNO-CEPT2 energy converges toward the canonical counterpart and is more accurate than that of PNO-CASPT2 as long as the same truncation thresholds are used.
Collapse
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
14
|
Scott CJC, Di Remigio R, Crawford TD, Thom AJW. Diagrammatic Coupled Cluster Monte Carlo. J Phys Chem Lett 2019; 10:925-935. [PMID: 30724572 DOI: 10.1021/acs.jpclett.9b00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach-diagCCMC-allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.
Collapse
Affiliation(s)
- Charles J C Scott
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , United Kingdom
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Tromsø - The Arctic University of Norway , N-9037 Tromsø , Norway
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - T Daniel Crawford
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Alex J W Thom
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , United Kingdom
| |
Collapse
|
15
|
Sen A, de Souza B, Huntington LMJ, Krupička M, Neese F, Izsák R. An efficient pair natural orbital based configuration interaction scheme for the calculation of open-shell ionization potentials. J Chem Phys 2018; 149:114108. [DOI: 10.1063/1.5048688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avijit Sen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Bernardo de Souza
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
- Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lee M. J. Huntington
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Martin Krupička
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
- University of Chemistry and Technology, Prague, Czech Republic
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Rolik Z, Kállay M. Novel strategy to implement active-space coupled-cluster methods. J Chem Phys 2018; 148:124108. [PMID: 29604813 DOI: 10.1063/1.5004971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.
Collapse
Affiliation(s)
- Zoltán Rolik
- MTA-BME "Lendület" Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME "Lendület" Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| |
Collapse
|
17
|
Huntington LMJ, Krupička M, Neese F, Izsák R. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems. J Chem Phys 2017; 147:174104. [DOI: 10.1063/1.5001320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lee M. J. Huntington
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
18
|
Neese F. Software update: the ORCA program system, version 4.0. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1327] [Citation(s) in RCA: 2259] [Impact Index Per Article: 282.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Frank Neese
- Abteilung molekulare Theorie und Spektroskopie, Max Planck Institut für Chemische Energiekonversion Mülheim an der Ruhr Germany
| |
Collapse
|