1
|
Wu J, Lv J, Zhao L, Zhao R, Gao T, Xu Q, Liu D, Yu Q, Ma F. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167028. [PMID: 37704131 DOI: 10.1016/j.scitotenv.2023.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Molecular simulation has been widely used to study microbial proteins' structural composition and dynamic properties, such as volatility, flexibility, and stability at the microscopic scale. Herein, this review describes the key elements of molecular docking and molecular dynamics (MD) simulations in molecular simulation; reviews the techniques combined with molecular simulation, such as crystallography, spectroscopy, molecular biology, and machine learning, to validate simulation results and bridge information gaps in the structure, microenvironmental changes, expression mechanisms, and intensity quantification; illustrates the application of molecular simulation, in characterizing the molecular mechanisms of interaction of microbial proteins with four different types of contaminants, namely heavy metals (HMs), pesticides, dyes and emerging contaminants (ECs). Finally, the review outlines the important role of molecular simulations in the study of microbial proteins for controlling environmental contamination and provides ideas for the application of molecular simulation in screening microbial proteins and incorporating targeted mutagenesis to obtain more effective contaminant control proteins.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruofan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, China
| | - Qi Xu
- PetroChina Fushun Petrochemical Company, Fushun 113000, China
| | - Dongbo Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Qiqi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Shoup D, Priola SA. Cell biology of prion strains in vivo and in vitro. Cell Tissue Res 2023; 392:269-283. [PMID: 35107622 PMCID: PMC11249200 DOI: 10.1007/s00441-021-03572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA.
| |
Collapse
|
3
|
Xia K, Shen H, Wang P, Tan R, Xun D. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations. J Biomol Struct Dyn 2022:1-10. [PMID: 35838152 DOI: 10.1080/07391102.2022.2099466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When the conformation of protein is changed from its natural state to a misfolded state, some diseases will happen like prion disease. Prion diseases are a set of deadly neurodegenerative diseases caused by prion protein misfolding and aggregation. Monohydric alcohols have a strong influence on the structure of protein. However, whether monohydric alcohols inhibit amyloid fibrosis remains uncertain. Here, to elucidate the effect of ethanol on the structural stability of human prion protein, molecular dynamics simulations were employed to analyze the conformational changes and dynamics characteristics of human prion proteins at different temperatures. The results show that the extension of β-sheet occurs more easily and the α-helix is more easily disrupted at high temperatures. We found that ethanol can destroy the hydrophobic interactions and make the hydrogen bonds stable, which protects the secondary structure of the protein, especially at 500 K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kui Xia
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Haolei Shen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Peng Wang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Damao Xun
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Palaniappan C, Narayanan RC, Sekar K. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2810-2819. [PMID: 34296847 DOI: 10.1021/acschemneuro.1c00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrPC remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrPC to the toxic PrPSc. The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the β1-α1-β2 subdomain, including an unfolding of a helix α1 and the elongation of the β-sheet. These unusual structural changes likely appeared to detach the β1-α1-β2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrPC to PrPSc. Ultimately, the unfolded α1 and its prior β1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable β1-α1-β2 subdomain, thereby enhancing the aggregation of misfolded PrPC through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant β1-α1-β2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrPC misfolding associated with the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
| | - Rahul C. Narayanan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
5
|
Feng Z, Li Y, Bai Y. Elevated temperatures accelerate the formation of toxic amyloid fibrils of hen egg-white lysozyme. Vet Med Sci 2021; 7:1938-1947. [PMID: 33978313 PMCID: PMC8464291 DOI: 10.1002/vms3.522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
The formation of amyloid fibrils is critical for neurodegenerative diseases. Some physiochemical conditions can promote the conversion of proteins from soluble globular shapes into insoluble well‐organized amyloid fibrils. The aim of this study was to investigate the effect of temperatures on amyloid fibrils formation in vitro using the protein model of hen egg‐white lysozyme (HEWL). The HEWL fibrils were prepared at temperatures of 37, 45, 50 and 57°C in glycine solution of pH 2.2. Under transmission electron microscopy, we found the well‐organized HEWL amyloid fibrils at temperatures of 45, 50 and 57°C after 10 days of incubation. Thioflavin T and Congo red florescence assays confirmed that the formation and growth of HEWL fibrils displayed a temperature‐dependent increase, and 57°C produced the most amounts. Meanwhile, the surface hydrophobicity of aggregates was greatly increased by ANS binding assay, and β‐sheet contents by circular dichroism analysis were increased by 17.8%, 22.0% and 34.9%, respectively. Furthermore, the HEWL fibrils formed at 57°C caused significant cytotoxicity in SH‐SY5Y cells after 48 hr exposure, and the cell viability determined by MTT assay was decreased, with 81.35 ± 0.29% for 1 μM, 61.45 ± 2.62% for 2 μM, and 11.58 ± 0.39% (p < .01) for 3 μM. Nuclear staining results also confirmed the apoptosis features. These results suggest that the elevated temperatures could accelerate protein unfolding of the native structure and formation of toxic amyloid fibrils, which can improve understanding the mechanisms of the unfolding and misfolding process of prion protein.
Collapse
Affiliation(s)
- Zili Feng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Ying Li
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Yu Bai
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| |
Collapse
|
6
|
Maity B, Li Z, Niwase K, Ganser C, Furuta T, Uchihashi T, Lu D, Ueno T. Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution. Phys Chem Chem Phys 2020; 22:18562-18572. [DOI: 10.1039/d0cp02069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 24-mer iron-storage protein, ferritin cage assembly plays important role in nanomaterials synthesis and drug delivery. Herein we explored the disassembly process of the cage by high-speed AFM in combination with all-atom MD simulations.
Collapse
Affiliation(s)
- Basudev Maity
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Zhipeng Li
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
- Ministry of Education Key Laboratory of Industrial Biocatalysis
| | - Kento Niwase
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
| | - Tadaomi Furuta
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
- Department of Physics
| | - Diannan Lu
- Ministry of Education Key Laboratory of Industrial Biocatalysis
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Takafumi Ueno
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|