1
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Nicholls TP, Williams JR, Willans CE. Reactivities of N-heterocyclic carbenes at metal centers. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
Chernyshev VM, Denisova EA, Eremin DB, Ananikov VP. The key role of R-NHC coupling (R = C, H, heteroatom) and M-NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem Sci 2020; 11:6957-6977. [PMID: 33133486 PMCID: PMC7553045 DOI: 10.1039/d0sc02629h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023] Open
Abstract
Complexes of metals with N-heterocyclic carbene ligands (M/NHC) are typically considered the systems of choice in homogeneous catalysis due to their stable metal-ligand framework. However, it becomes obvious that even metal species with a strong M-NHC bond can undergo evolution in catalytic systems, and processes of M-NHC bond cleavage are common for different metals and NHC ligands. This review is focused on the main types of the M-NHC bond cleavage reactions and their impact on activity and stability of M/NHC catalytic systems. For the first time, we consider these processes in terms of NHC-connected and NHC-disconnected active species derived from M/NHC precatalysts and classify them as fundamentally different types of catalysts. Problems of rational catalyst design and sustainability issues are discussed in the context of the two different types of M/NHC catalysis mechanisms.
Collapse
Affiliation(s)
- Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
| | - Ekaterina A Denisova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Dmitry B Eremin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
- The Bridge@USC , University of Southern California , 1002 Childs Way , Los Angeles , California 90089-3502 , USA
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
4
|
Eremin DB, Denisova EA, Yu Kostyukovich A, Martens J, Berden G, Oomens J, Khrustalev VN, Chernyshev VM, Ananikov VP. Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki-Heck Reaction. Chemistry 2019; 25:16564-16572. [PMID: 31461192 DOI: 10.1002/chem.201903221] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 02/06/2023]
Abstract
N-Heterocyclic carbene (NHC) ligands are ubiquitously utilized in catalysis. A common catalyst design model assumes strong M-NHC binding in this metal-ligand framework. In contrast to this common assumption, we demonstrate here that lability and controlled cleavage of the M-NHC bond (rather than its stabilization) could be more important for high-performance catalysis at low catalyst concentrations. The present study reveals a dynamic stabilization mechanism with labile metal-NHC binding and [PdX3 ]- [NHC-R]+ ion pair formation. Access to reactive anionic palladium intermediates formed by dissociation of the NHC ligands and plausible stabilization of the molecular catalyst in solution by interaction with the [NHC-R]+ azolium ion is of particular importance for an efficient and recyclable catalyst. These ionic Pd/NHC complexes allowed for the first time the recycling of the complex in a well-defined form with isolation at each cycle. Computational investigation of the reaction mechanism confirms a facile formation of NHC-free anionic Pd in polar media through either Ph-NHC coupling or reversible H-NHC coupling. The present study formulates novel ideas for M/NHC catalyst design.
Collapse
Affiliation(s)
- Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia
| | - Ekaterina A Denisova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Victor N Khrustalev
- National Research Center «Kurchatov Institute», Acad. Kurchatov Sq. 1, Moscow, 123182, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Victor M Chernyshev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia.,Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow, 119991, Russia
| |
Collapse
|
5
|
Astakhov AV, Soliev SB, Gordeev EG, Chernyshev VM, Ananikov VP. Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R-NHC, X-NHC and X-X couplings in M(0)/M(ii) and M(ii)/M(iv) catalytic cycles: a theoretical study. Dalton Trans 2019; 48:17052-17062. [PMID: 31696883 DOI: 10.1039/c9dt03266e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes of Ni, Pd, and Pt with N-heterocyclic carbenes (NHCs) catalyze numerous organic reactions via proposed typical M0/MII catalytic cycles comprising intermediates with the metal center in (0) and (II) oxidation states. In addition, MII/MIV catalytic cycles have been proposed for a number of reactions. The catalytic intermediates in both cycles can suffer decomposition via R-NHC coupling and the side reductive elimination of the NHC ligand and R groups (R = alkyl, aryl, etc.) to give [NHC-R]+ cations. In this study, the relative stabilities of (NHC)MII(R)(X)L and (NHC)MIV(R)(X)3L intermediates (X = Cl, Br, I; L = NHC, pyridine) against R-NHC coupling and other decomposition pathways via reductive elimination reactions were evaluated theoretically. The study revealed that the R-NHC coupling represents the most favorable decomposition pathway for both types of intermediates (MII and MIV), while it is thermodynamically and kinetically more facile for the MIV complexes. The relative effects of the metal M (Ni, Pd, Pt) and ligands L and X on the R-NHC coupling for the MIV complexes were significantly stronger than that for the MII complexes. In particular, for the (NHC)2MIV(Ph)(Br)3 complexes, Ph-NHC coupling was facilitated dramatically from Pt (ΔG = -36.9 kcal mol-1, ΔG≠ = 37.5 kcal mol-1) to Pd (ΔG = -61.5 kcal mol-1, ΔG≠ = 18.3 kcal mol-1) and Ni (ΔG = -80.2 kcal mol-1, ΔG≠ = 4.7 kcal mol-1). For the MII oxidation state of the metal, the bis-NHC complexes (L = NHC) were slightly more kinetically and thermodynamically stable against R-NHC coupling than the mono-NHC complexes (L = pyridine). An inverse relation was observed for the MIV oxidation state of the metal as the (NHC)2MIV(R)(X)3 complexes were kinetically (4.3-15.9 kcal mol-1) and thermodynamically (8.0-23.2 kcal mol-1) significantly less stable than the (NHC)MIV(R)(X)3L (L = pyridine) complexes. For the NiIV and PdIV complexes, additional decomposition pathways via the reductive elimination of the NHC and X ligands to give the [NHC-X]+ cation (X-NHC coupling) or reductive elimination of the X-X molecule were found to be thermodynamically and kinetically probable. Overall, the obtained results demonstrate significant instability of regular Ni/NHC and Pd/NHC complexes (for example, not additionally stabilized by chelation) and high probability to initiate "NHC-free" catalysis in the reactions comprising MIV intermediates.
Collapse
Affiliation(s)
- Alexander V Astakhov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia. and Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Safarmurod B Soliev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia.
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia. and Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia. and Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
6
|
Denisova EA, Eremin DB, Gordeev EG, Tsedilin AM, Ananikov VP. Addressing Reversibility of R-NHC Coupling on Palladium: Is Nano-to-Molecular Transition Possible for the Pd/NHC System? Inorg Chem 2019; 58:12218-12227. [PMID: 31448903 DOI: 10.1021/acs.inorgchem.9b01630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has recently been shown that palladium-catalyzed reactions with N-heterocyclic carbene (NHC) ligands involve R-NHC coupling accompanied by transformation of the molecular catalytic system into the nanoscale catalytic system. An important question appeared in this regard is whether such a change in the catalytic system is irreversible. More specifically, is the reverse nano-to-molecular transformation possible? In view of the paramount significance of this question to the area of catalyst design, we studied the capability of 2-substituted azolium salts to undergo the breakage of C-C bond and exchange substituents on the carbene carbon with corresponding aryl halides in the presence of Pd nanoparticles. The study provides important experimental evidence of possibility of the reversible R-NHC coupling. The observed behavior indicates that the nanosized metal species are capable of reverse transition to molecular species. Such an option, known for phosphine ligands, was previously unexplored for NHC ligands. The present study for the first time demonstrates bidirectional dynamic transitions between the molecular and nanostructured states in Pd/NHC systems. As a unique feature, surprisingly small activation barriers (<18 kcal/mol) and noticeable thermodynamic driving force (-5 to -7 kcal/mol) were calculated for C-C bond oxidative addition to Pd(0) centers in the studied system. The first example of NHC-mediated Pd leaching from metal nanoparticles to solution was observed and formation of Pd/NHC complex in solution was detected by ESI-MS.
Collapse
Affiliation(s)
- Ekaterina A Denisova
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , Moscow 119991 , Russia
| | - Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , Moscow 119991 , Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , Moscow 119991 , Russia
| | - Andrey M Tsedilin
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , Moscow 119991 , Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , Moscow 119991 , Russia
| |
Collapse
|
7
|
Polynski MV, Pidko EA. Intermetallic species in the Negishi coupling and their involvement in inhibition pathways. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00752k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of M–Zn-intermetallic species (M = Ni, Pd) in the course of the Negishi reaction in THF solvent and their potential impact on in situ catalyst inhibition were investigated by DFT calculations carried out at two levels of theory.
Collapse
Affiliation(s)
- Mikhail V. Polynski
- TheoMAT Group
- ITMO University
- St. Petersburg
- Russia
- Zelinsky Institute of Organic Chemistry
| | | |
Collapse
|