1
|
Song J, Li X, Xu X, Lu J, Hu H, Li J. Development of Multiscale Force Field for Actinide (An 3+) Solutions. J Chem Theory Comput 2024; 20:9799-9813. [PMID: 39535267 DOI: 10.1021/acs.jctc.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A multiscale force field (FF) is developed for an aqueous solution of trivalent actinide cations An3+ (An = U, Np, Pu, Am, Cm, Bk, and Cf) by using a 12-6-4 Lennard-Jones type potential considering ion-induced dipole interaction. Potential parameters are rigorously and automatically optimized by the meta-multilinear interpolation parametrization (meta-MIP) algorithm via matching the experimental properties, including ion-oxygen distance (IOD) and coordination number (CN) in the first solvation shell and hydration free energy (HFE). The water solvent models incorporate an especially developed polar coarse-grained (CG) water scheme named PW32 and three widely used all-atom (AA) level SPC/E, TIP3P, and TIP4P water schemes. Each PW32 is modeled as two bonded beads to represent three neighboring water molecules, the simulation efficiency of which is 1 to 2 orders of magnitude higher than that of AA waters. The newly developed FF shows high accuracy and transferability in reproducing the IOD, CN, and HFE of An3+. The molecular structure and water exchange dynamics of the first An3+ hydration shell and the ionic (van der Waals) radii are reinvestigated in this work. Moreover, the new FF can readily be transferred to other popular FFs, as it has practicably predicted the permeability of An3+ in a graphene oxide filter within the framework of optimized potentials for liquid simulations (OPLS)-AA FF. It holds promise for applications in exploring actinide aqueous solutions with multiscale computational overhead.
Collapse
Affiliation(s)
- Junjie Song
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Xu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junbo Lu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hanshi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Sose AT, Gustke T, Wang F, Anand G, Pasupuleti S, Savara A, Deshmukh SA. Evaluation of Sampling Algorithms Used for Bayesian Uncertainty Quantification of Molecular Dynamics Force Fields. J Chem Theory Comput 2024; 20:5732-5742. [PMID: 38924093 PMCID: PMC11238537 DOI: 10.1021/acs.jctc.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
New Bayesian parameter estimation methods have the capability to enable more physically realistic and reliable molecular dynamics (MD) simulations by providing accurate estimates of uncertainties of force-field (FF) parameters and associated properties. However, the choice of which Bayesian parameter estimation algorithm to use has not been widely investigated, despite its impact on the effective exploration of parameter space. Here, using a case example of the Embedded Atom Method (EAM) FF parameters, we investigated the ramifications of several of the algorithm choices. We found that Ensemble Slice Sampling (ESS) and Affine-Invariant Ensemble Sampling (AIES) demonstrate a new level of superior performance, culminating in more accurate parameter and property estimations with tighter uncertainty bounds, compared to traditional methods such as Metropolis-Hastings (MH), Gradient Search (GS), and Uniform Random Sampler (URS). We demonstrate that Bayesian Uncertainty Quantification with ESS and AIES leads to significantly more accurate and reliable predictions of the FF parameters and properties. The results suggest that ESS and AIES should be used to obtain more accurate parameter and uncertainty estimations while providing deeper physical insights.
Collapse
Affiliation(s)
- Abhishek T Sose
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Troy Gustke
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Fangxi Wang
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Gaurav Anand
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Sanjana Pasupuleti
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Aditya Savara
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
3
|
Ma M, Song J, Dong Y, Fang W, Gao L. Structural and thermodynamic properties of bulk triglycerides and triglyceride/water mixtures reproduced using a polarizable coarse-grained model. Phys Chem Chem Phys 2023; 25:22232-22243. [PMID: 37577752 DOI: 10.1039/d3cp01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Triglycerides (TGs) play important roles in renewable energies, food production, medicine, and metabolism in organisms. Here, we developed a novel coarse-grained (CG) force field (FF) for triglycerides to reproduce both the structural and thermodynamic properties of bulk TGs, TG/air interfaces, and TG/water mixtures using molecular dynamics (MD) simulations. We rigorously optimized the bonded and nonbonded force parameters between the CG beads of TGs and nonbonded force parameters between TG beads and polarizable CG water beads by employing an efficient meta-multilinear interpolation parameterization algorithm recently developed by us. This CG FF performs very well in reproducing the percolating network of the TG bulk phase self-assembled in water and a variety of molecular conformations predicted by all-atom MD simulations. More importantly, it also correctly reproduces multiple experimentally measurable macroscopic thermodynamic properties, including the density and surface tensions of both the TG/air and TG/water interfaces. This paves the way for studying more complicated systems involving TGs on a large scale.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| |
Collapse
|
4
|
Wan M, Song J, Yang Y, Gao L, Fang W. A top-down and bottom-up combined strategy for parameterization of coarse-grained force fields for phospholipids. Phys Chem Chem Phys 2023; 25:6757-6767. [PMID: 36789502 DOI: 10.1039/d2cp05384e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coarse-graining (CG) molecular dynamics (MD) simulations are widely used in interpreting experimental observations and predicting assembly morphology as well as collective behaviour but also face the problem of poor accuracy. A main issue is that cross-termed interactions between different CG beads are inadequately parameterized. This work proposes a novel top-down and bottom-up combined strategy to parameterize both self- and cross-termed interactions of zwitterionic phospholipids in water solution based on a piecewise Morse potential describing nonbonded van der Waals interactions. The self-interacting force parameters were optimized by matching experimental density, heat vapourization, and surface tension in a top-down manner, while the cross-termed interactions were optimized by fitting pseudo properties obtained from atomistic simulations in a bottom-up way, including mixing density, intermolecular energy, and radial mixing coefficient. The transferability of the CG force field (FF) was confirmed by reproducing a variety of structural and thermodynamic properties of lipid membranes in both liquid and gel phases. This FF can well depict vesicle self-assembly and vesicle fusion processes. Matching pseudo properties opens a new way to develop CG FF with increased accuracy and transferability.
Collapse
Affiliation(s)
- Mingwei Wan
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Ying Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Weihai Fang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| |
Collapse
|
5
|
Shaimardanov AR, Shulga DA, Palyulin VA. Is an Inductive Effect Explicit Account Required for Atomic Charges Aimed at Use within the Force Fields? J Phys Chem A 2022; 126:6278-6294. [PMID: 36054931 DOI: 10.1021/acs.jpca.2c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarization and inductive effects are the concepts that have been widely used in qualitative and even quantitative descriptions of experimentally observed properties in chemistry. The polarization effect has proven to be important in cases of biomolecular modeling though still the vast majority of molecular simulations use the classical non-polarizable force fields. In the last few decades, a lot of effort has been put into promoting the polarization effect and incorporating it into modern force fields and charge calculation methods. In contrast, the inductive effect has not attracted such attention and is effectively absent in both classic and modern force fields. Thus, a question is whether this difference corresponds to the difference in the physical significance of the effects and their explicit account, or is an artifact that should be corrected in the next generation of force fields. The significance of the electronic effects is studied in this paper through the prism of performance of specific models for atomic charge calculation that take into explicit account a nested set of effects: the formal charge, the nearest neighbors, the inductive effect, and finally the model, which takes into account all effects, which are possible to account for using atomic charges. The specific choice for the methods is the following: formal charges, MMFF94 bond charge increments, Dynamic Electronegativity Relaxation (DENR), and RESP. We propose a special scheme for the separate estimation of each particular effect contribution. By pairwise comparing the residual molecular electrostatic potential (MEP) errors of those charge models (aimed at best reproducing the quantum chemical reference MEP), we sequentially revealed how the account of each effect contributes to the better-quality MEP reproduction. The following relative importance of effects was estimated; thus, the natural hierarchy of the effects was established. First, the account of formal charges is of primordial importance. Second, the nearest neighbors account is the next in significance. Third, the explicit account of inductive effect in empirical charge calculation schemes was shown to significantly─both qualitatively and quantitatively─improve the quality of MEP reproduction. Fourth, the contribution of polarization is indirectly assessed. Surprisingly, it is of the order of magnitude of the inductive effect even for the molecular systems, for which it is anticipated to be more significant. Finally, the relative importance of anisotropic effects in neutral molecules was additionally reviewed.
Collapse
Affiliation(s)
- Arslan R Shaimardanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Dmitry A Shulga
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Song J, Wan M, Yang Y, Gao L, Fang W. Development of accurate coarse-grained force fields for weakly polar groups by an indirect parameterization strategy. Phys Chem Chem Phys 2021; 23:6763-6774. [PMID: 33720253 DOI: 10.1039/d1cp00032b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coarse-grained (CG) molecular dynamics simulations are widely used to predict morphological structures and interpret mechanisms of mesoscopic behavior between the scope of traditional experiments and all-atom simulations. However, most current CG force fields (FFs) are not precise enough, especially for polar molecules or functional groups. A main obstacle in developing accurate CG FFs for polar molecules is the freezing problem met at room temperature. In this work, we introduce an indirect parametrization strategy for weakly polar groups by considering their short-chain homologs to avoid freezing. Here, a polar group containing three to four heavy atoms is mapped into one CG bead that is connected to one alkyl bead composed of three or four carbons. The CG beads interact via 4-parameter nonbonded Morse potentials and harmonic bonded potentials. An efficient meta-multilinear interpolation parameterization algorithm, as recently developed by us, is used to rigorously optimize the force parameters. Satisfactory accuracy is witnessed in terms of the density, heat of vaporization, surface tension, and solvation free energy of the homologs of twelve polar molecules, all deviating from the experiment by less than 5%. The transferability of the current FF is indicated by the predicted density, heat of vaporization, and end-to-end distance distributions of fatty acid methyl esters composed of multiple functional groups parameterized in this work.
Collapse
Affiliation(s)
- Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | | | | | | | | |
Collapse
|
7
|
Wan M, Song J, Yang Y, Gao L, Fang W. Development of coarse-grained force field for alcohols: an efficient meta-multilinear interpolation parameterization algorithm. Phys Chem Chem Phys 2021; 23:1956-1966. [PMID: 33464253 DOI: 10.1039/d0cp05503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coarse-grained (CG) molecular dynamics are powerful tools to access a mesoscopic phenomenon and simultaneously record microscopic details, but currently the CG force fields (FFs) are still limited by low parameterization efficiency and poor accuracy especially for polar molecules. In this work, we developed a Meta-Multilinear Interpolation Parameterization (Meta-MIP) algorithm to optimize the CG FFs for alcohols. This algorithm significantly boosts parameterization efficiency by constructing on-the-fly local databases to cover the global optimal parameterization path. In specific, an alcohol molecule is mapped to a heterologous model composed of an OH bead and a hydrocarbon portion which consists of alkane beads representing two to four carbon atoms. Non-bonded potentials are described by soft Morse functions that have no tail-corrections but can still retain good continuities at truncation distance. Nearly all of the properties in terms of density, heat of vaporization, surface tension, and solvation free energy for alcohols predicted by the current FFs deviate from experimental values by less than 7%. This Meta-MIP algorithm can be readily applied to force field development for a wide variety of molecules or functional groups, in many situations including but not limited to CG FFs.
Collapse
Affiliation(s)
- Mingwei Wan
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
8
|
Rogers TR, Wang F. Accurate MP2-based force fields predict hydration free energies for simple alkanes and alcohols in good agreement with experiments. J Chem Phys 2020; 153:244505. [PMID: 33380083 PMCID: PMC7771999 DOI: 10.1063/5.0035032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Force fields for four small molecules, methane, ethane, methanol, and ethanol, were created by force matching MP2 gradients computed with triple-zeta-quality basis sets using the Adaptive Force Matching method. Without fitting to any experimental properties, the force fields created were able to predict hydration free energies, enthalpies of hydration, and diffusion constants in excellent agreements with experiments. The root mean square error for the predicted hydration free energies is within 1 kJ/mol of experimental measurements of Ben-Naim et al. [J. Chem. Phys. 81(4), 2016-2027 (1984)]. The good prediction of hydration free energies is particularly noteworthy, as it is an important fundamental property. Similar hydration free energies of ethane relative to methane and of ethanol relative to methanol are attributed to a near cancellation of cavitation penalty and favorable contributions from dispersion and Coulombic interactions as a result of the additional methyl group.
Collapse
Affiliation(s)
- T. Ryan Rogers
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Feng Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
9
|
Joshi SY, Deshmukh SA. A review of advancements in coarse-grained molecular dynamics simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828583] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soumil Y. Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|