1
|
Park S, Yun E, Song JW, Lee H. Comprehensive Insights into Exciplex Behavior in Nonpolar Media: Revisiting Weller's Framework with Molecular Conformation. J Phys Chem A 2025; 129:3250-3263. [PMID: 40152661 DOI: 10.1021/acs.jpca.5c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Exciplexes are pivotal in organic light-emitting diodes and photovoltaics. However, their formation and emission in nonpolar solvents remain unclear. Revisiting Weller's works on photoinduced electron transfer (PET) rates and exciplex emission based on electrochemical redox potentials, we investigate exciplex behavior in cyclohexane using anthracene (Ant) as an acceptor and N,N-dimethylaniline (DMA) derivatives as donors. Employing steady-state and time-resolved spectroscopy, electrochemistry, and density functional theory (DFT) calculations, we demonstrate that electrochemical redox potentials alone inadequately explain the exciplex behavior in nonpolar environments. Our DFT analysis reveals that the C-N rotational angle of the dimethylamine group of a donor influences the highest occupied molecular orbital (HOMO) energy levels, affecting quenching processes. Furthermore, time-dependent DFT simulations accurately reproduce experimental exciplex emission spectra, linking emission intensity to donor contribution in the exciplex HOMO. These findings deepen the understanding of exciplex behavior in nonpolar media and provide insights for designing and interpreting exciplex-based optoelectronic materials.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem) Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ena Yun
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem) Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Republic of Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem) Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Bae HS, Ahn DH, Song JW. Why Does the Optimal Tuning Method of the Range Separation Parameter of a Long-Range Corrected Density Functional Fail in Intramolecular Charge Transfer Excitation Calculations? Molecules 2024; 29:4423. [PMID: 39339418 PMCID: PMC11434625 DOI: 10.3390/molecules29184423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
We performed intra- and intermolecular charge transfer (CT) excitation energy calculations of (a) conjugated carbon chain [H2N-(CH=CH)n-X] and (b) its equidistant H2NH∙∙∙HX (n = 2~8) with various electron acceptors (X = NH2, OH, Cl, CHO, CN, and NO2) using EOM-CCSD, time-dependent (TD) Hartree-Fock (HF) and various density functional theory (DFT) functionals, such as BLYP, B3LYP, long-range corrected (LC) DFT, and LC-DFT with an optimally tuned (OT) range separation parameter (µ) using Koopman's theorem to investigate the effect of the electron-withdrawing (or -donating) strength of end-capped functional group (X) and CT distance (R) on intra- and intermolecular CT excitation energies. As the electron-withdrawing strength of X increases, both intra- and intermolecular CT excitation energies tend to decrease, since energy gaps between orbitals corresponding to CT excitations (e.g., HOMO and LUMO) decrease. However, the effect of the electron-withdrawing group on intramolecular CT excitation energy is negligible (at most 0.5 eV). OT-LC-DFT shows accurate intermolecular CT excitation energy, but worse results in intramolecular CT excitation energy than LC-DFT with the default µ value (0.47). Therefore, we conclude that the optimal tuning method is not effective in predicting intramolecular CT excitation energy. While intermolecular CT excitation energy has excitonic binding energy with asymptotic behavior to CT distance that is not affected by the choice of range separation parameter, intramolecular CT excitation energy is affected by orbital relaxation energy, which strongly depends on the choice of range separation parameter, which makes the OT method of range separation parameter ineffective in predicting intramolecular CT excitation energy as well as local excitation with high accuracy.
Collapse
Affiliation(s)
| | | | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Republic of Korea; (H.-S.B.); (D.-H.A.)
| |
Collapse
|
3
|
Ahn DH, Nakajima T, Hirao K, Song JW. Long-range Corrected Density Functional Theory Including a Two-Gaussian Hartree-Fock Operator for High Accuracy Core-excitation Energy Calculations of Both the Second- and Third-Row Atoms (LC2gau-core-BOP). J Chem Theory Comput 2024. [PMID: 39106473 DOI: 10.1021/acs.jctc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → n*, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.6 and 0.3 eV for core excitation energies of the second- and third-row atoms of the tested small molecules, respectively. We found that the inclusion of the short-range interelectronic HF exchange at a distance ranging from 0.2 to 0.6 a.u. contributes to the increase of performances on 1s orbital energy calculations of the second-row atoms, while the inclusion of more short-range interelectronic HF exchange at a distance ranging from 0 to 0.2 a.u. does to the increase of performance on 1s orbital energy calculations of the third-row atoms. It is notable that all of these improvements were accomplished using flexible Gaussian attenuating HF exchange inclusion. LC2gau-core-BOP shows deviations of less than 0.8 eV from experimental values for all of the core-excitation energies of the tested medium-size molecules consisting of thymine, oxazole, glycine, and dibenzothiophene sulfone. Moreover, by optimizing one parameter of the OP correlation functional, LC2gau-core-BOP provides atomization energies over the G3 test set with an accuracy comparable to that of B3LYP.
Collapse
Affiliation(s)
- Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| | | | - Kimihiko Hirao
- RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8501, Japan
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| |
Collapse
|
4
|
Kargeti A, Dhar RS, Siddiqui SA, Saleh N. Design and Exploration by Quantum Chemical Analysis of Photosensitizers Having [D-π-π- A]- and [D-D-triad-A]-Type Molecular Structure Models for DSSC. ACS OMEGA 2024; 9:11471-11477. [PMID: 38496996 PMCID: PMC10938407 DOI: 10.1021/acsomega.3c08165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Density functional theory (DFT) calculations are performed on the newly developed and designed photosensitizers having [D-D-triad-A]- and [D-π-π-A]-type structural models for near-infrared absorption dye-sensitized solar cells (DSSCs). For this purpose, three novel molecules are designed, which are named as follows: [naphthalene-anthracene-thiophene-furan-benzonitrile] as dye S1, [coronene-anthracene-thiophene-furan-benzonitrile] as dye S2, and [fluorene-thiophene-furan-benzonitrile] as dye S3. In all three systems, benzonitrile is the acceptor moiety, while thiophene and furan are bridging moieties. Naphthalene and anthracene are donor moieties in S1, whereas coronene and anthracene are donor moieties in S2, and fluorene is the only single donor moiety used for designing the dye complex S3. All three dye complexes are optimized under the DFT framework by using the B3LYP hybrid functional with 6-31G(d,p) basis set on Gaussian 16W software. The absorption spectra are calculated utilizing time-dependent density functional theory (TD-DFT) with the CAM-B3LYP/6-31G(d,p) basis set. The calculated absorption maxima of S1 and S2 are 749.45 and 750.04 nm, respectively, while for S3, it is reported to be at 337.35 nm, which suggests that the designed molecular structure having a double-donor moiety is suitable for high absorption wavelength. Further, the analysis of frontier molecular orbital energy gap suggests that the molecular systems S1, S2, and S3 have values 2.17, 2.13, and 3.618 eV, respectively, which lie in the semiconducting region. The other parameters calculated for the photovoltaic performance are exciton binding energy, change in free energy of charge regeneration, change in free energy of charge injection, oscillator strength, light harvesting efficiency, and open-circuit voltage.
Collapse
Affiliation(s)
- Ankit Kargeti
- Department
of Electronics and Communication Engineering, NIT Mizoram, Aizawl 796012, India
- Department
of Applied Sciences, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana, NCR 122413, India
| | - Rudra Sankar Dhar
- Department
of Electronics and Communication Engineering, NIT Mizoram, Aizawl 796012, India
| | | | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551 ,United Arab
Emirates
| |
Collapse
|
5
|
Wang Y, Zhou Y, Du K. Enumeration, Nomenclature, and Stability Rules of Carbon Nanobelts. J Chem Inf Model 2024; 64:1261-1276. [PMID: 38327033 DOI: 10.1021/acs.jcim.3c02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
With recent breakthroughs and advances in synthetic chemistry, carbon nanobelts (CNBs) have become an emerging hot topic in chemistry and materials science. Owing to their unique molecular structures, CNBs have intriguing properties with applications in synthetic materials, host-guest chemistry, optoelectronics, and so on. Although a considerable number of CNBs with diverse forms have been synthesized, no systematic nomenclature is available yet for this important family of macrocycles. Moreover, little is known about the detailed isomerism of CNBs, which, in fact, exhibits greater complexity than that of carbon nanotubes. The copious variety of CNB isomers, along with the underlying structure-property relationships, bears fundamental relevance to the ongoing design and synthesis of novel nanobelts. In this paper, we propose an elegant approach to systematically enumerate, classify, and name all possible isomers of CNBs. Besides the simplest, standard CNBs defined by chiral indices (n, m), the nonstandard CNBs (n, m, l) involve an additional winding index l. Based on extensive quantum chemical calculations, we present a comprehensive study of the relative isomer stability of CNBs containing up to 30 rings. A simple Hückel-based model with a high predictive power reveals that the relative stability of standard CNBs is governed by the π stabilization and the strain destabilization induced by the cylindrical carbon framework, and the former effect prevails over the latter. For nonstandard CNBs, a third stability factor, the H···H repulsion in the benzo[c]phenanthrene-like motifs, is also shown to be important and can be incorporated into the simple quantitative model. In general, lower-energy CNB isomers have a larger HOMO-LUMO gap, suggesting that their thermodynamic stability coincides with kinetic stability. The most stable CNB isomers determined can be considered the optimal targets for future synthesis. These results lay an initial foundation and provide a useful theoretical tool for further research on CNBs and related analogues.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yi Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ke Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
6
|
Hirano A, Kameda T, Wada M, Tanaka T, Kataura H. Solubilization of Carbon Nanobelts in Aqueous Solutions: Optical and Colloidal Properties. NANO LETTERS 2023. [PMID: 37987714 DOI: 10.1021/acs.nanolett.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Carbon nanobelts (CNBs) correspond to carbon nanotube (CNT) segments and are insoluble in most common aqueous solutions, posing challenges across diverse applications. In this study, [12] CNB, which corresponds to a (6,6) CNT segment, was solubilized by aliphatic surfactant micelles through host-guest complexation, which was confirmed by comprehensive analyses involving spectrophotometry, mass spectrometry, and molecular dynamics simulations. Through this solubilization, zero-Stokes shift emission of the CNB could occur, which could be ascribed to the symmetry-allowed transition. In contrast, CNB was insoluble in non-aliphatic surfactant solutions. The mechanism by which CNB is solubilized using aliphatic surfactants is completely distinct from that of the CNT dispersion mechanism. The present finding provides knowledge of the effectiveness of aliphatic compounds in solubilizing CNBs and their derivatives (carbon nanohoops), which show significant potential for various applications in aqueous systems, including biological applications.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
7
|
George G, Stasyuk OA, Solà M, Stasyuk AJ. A step towards rational design of carbon nanobelts with tunable electronic properties. NANOSCALE 2023; 15:17373-17385. [PMID: 37791958 DOI: 10.1039/d3nr04045c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Belt-shaped aromatic compounds are among the most attractive classes of radial π-conjugated nanocarbon molecules with unique physical and chemical properties. In this work, we computationally studied a number of all-carbon and heteroatom-bridged nanobelts, as well as their inclusion complexes with fullerene C60. Our results provide a useful guide for modulating the electronic properties of the nanobelts. An in-depth analysis of the ground and excited state properties of their complexes has allowed us to establish structure-property relationships and propose simple principles for the design of nanobelts with improved electron-donating properties suitable for photovoltaic applications.
Collapse
Affiliation(s)
- G George
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - O A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - M Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - A J Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
8
|
Athar M, Patnaik A. Through-Bond-Driven Through-Space Interactions in a Fullerene C 60 Noncovalent Dyad: An Unusual Strong Binding between Spherical and Planar π Electron Clouds and Culmination of Dyadic Fractals. J Phys Chem A 2022; 126:3629-3641. [PMID: 35658511 DOI: 10.1021/acs.jpca.1c10828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen-bond-induced π-depletion as a criterion for π-stacking, a configurationally unique noncovalent strategy enabled an unconventional strong binding between the spherical N-fulleropyrrolidine (NFP) and the planar distributions of π electron clouds of three substituted pybates to form noncovalent fulleropyrrolidino-4-(pyrenyl) butanoate dyads of large computed interaction energies, varying between 37.49 and 44.93 kcal/mol. The geometrical distortion/bending of the alkyl tail of pybate in the noncovalent dyad was experimentally corroborated via UV-vis absorption spectroscopy, which translated into spectral broadening along with pronounced shifts in the n-π* transitions of the oxy-substituted pyrene in different solvents, ensuring through-bond interactions. Facile electron transfer through H-bond influenced the dynamic dispersive forces to be active, revealing the supremacy of through-bond over through-space interactions. The analyses of intermolecular forces using an absolutely localized molecular orbital-based energy decomposition analysis (ALMO-EDA) scheme revealed intricate insights into the intermolecular interactions and characteristic charge transfer; the dominance of forward electron transfer (pybate to NFP) over the reverse in offering stabilization was noted. Charge transfer was investigated further from natural bond orbital (NBO) and absolutely localized molecular orbital-based charge-transfer analysis (ALMO-CTA) methods, establishing the supremacy of donor-to-acceptor electron transfer over the reverse (acceptor-to-donor) one. The characteristic self-assembly of the noncovalent dyad in suitable solvents led to the formation of fractal networks via reaction-limited cluster aggregation with a fractal dimension of 2.37. Adoption of constrained molecular dynamics simulations indicated probable wrapping of pybates around NFP, leading to fractal-like assembly.
Collapse
Affiliation(s)
- Mohd Athar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|