1
|
Fisker CD, Poater J, Bickelhaupt FM, Mecinović J. Dynamic Combinatorial Chemistry of Ditellurides. Chemistry 2025:e202501291. [PMID: 40354138 DOI: 10.1002/chem.202501291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Dynamic combinatorial chemistry enables the exploration of reversible chemical exchange reactions. Here, we report studies on the dynamic Te─Te bond exchange of chemically and structurally diverse ditellurides using 125Te NMR spectroscopy. The results revealed rapid and unbiased equilibration, forming a consistent 1:1 distribution of reactants and products across all chemical systems. Extending to multi-component mixtures, we observed robust equilibrium formation even in complex systems involving multiple ditelluride species that can be easily distinguished by 125Te NMR spectroscopy. In line with the NMR analyses showing that the Te─Te bond exchange efficiently proceeds in various solvents, at very low temperatures, in the absence of visible light, and in the presence of radical scavengers, quantum chemical analyses revealed that the ditelluride-ditelluride exchange likely proceeds via a non-synchronous concerted mechanism and not via an alternative radical mechanism. Integrated NMR spectroscopic and quantum chemical analyses also showed that the efficiency of the chalcogen-chalcogen exchange involving ditellurides follows the trend Te-Te > Te-Se > Te-S. Overall, the results indicate that ditellurides are excellent dynamic systems that may find applications across molecular sciences.
Collapse
Affiliation(s)
- Christian D Fisker
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jordi Poater
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
2
|
Hordijk Y, Dalla Tiezza M, Rodrigues Silva D, Hamlin TA. Radical Addition Reactions: Hierarchical Ab Initio Benchmark and DFT Performance Study. Chemphyschem 2025; 26:e202400728. [PMID: 39230961 DOI: 10.1002/cphc.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We performed a hierarchical ab initio benchmark study of the gas-phase radical addition reactions of X⋅+C2H2 and X⋅+C2H4 (X⋅ = CH3⋅, NH2⋅, OH⋅, SH⋅). The hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) were paired with a hierarchal series of Dunning basis sets with and without diffuse functions ((aug)-cc-pVDZ, (aug)-cc-pVTZ, (aug)-cc-pVQZ). The HF ground-state wavefunctions were transformed into quasi-restricted orbital (QRO) reference wavefunctions to address spin contamination. Following extrapolation to the CBS limit, the energies from our highest- QRO-CCSD(T)/CBS+ level converged within 0.0-3.4 kcal mol-1 and 0.0-1.0 kcal mol-1 concerning the ab initio method and basis set, respectively. Our QRO-CCSD(T)/CBS+ reference data was used to evaluate the performance of 98 density functional theory (DFT) approximations. The MAE of the best functionals for reaction barriers and energies were: OLYP (1.9 kcal mol-1), BMK (1.0 kcal mol-1), M06-2X (0.9 kcal mol-1), MN12-SX (0.8 kcal mol-1) and CAM-B3LYP (0.8 kcal mol-1). These functionals also accurately reproduce key geometrical parameters of the stationary points within an average 2 % deviation from the reference QRO-CCSD(T)/cc-pVTZ level.
Collapse
Affiliation(s)
- Yuman Hordijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Marco Dalla Tiezza
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Daniela Rodrigues Silva
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Erdmann P, Sigmund LM, Schmitt M, Hähnel T, Dittmer LB, Greb L. A Benchmark Study of DFT-Computed p-Block Element Lewis Pair Formation Enthalpies Against Experimental Calorimetric Data. Chemphyschem 2024; 25:e202400761. [PMID: 39219146 DOI: 10.1002/cphc.202400761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The quantification of Lewis acidity is of fundamental and applied importance in chemistry. While the computed fluoride ion affinity (FIA) is the most widely accepted thermodynamic metric, only sparse experimental values exist. Accordingly, a benchmark of methods for computing Lewis pair formation enthalpies, also with a broader set of Lewis bases against experimental data, is missing. Herein, we evaluate different density functionals against a set of 112 experimentally determined Lewis acid/base binding enthalpies and gauge influences such as solvation correction in structure optimization. From that, we can recommend r2SCAN-3c for robust quantification of this omnipresent interaction.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas M Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Manuel Schmitt
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Theresa Hähnel
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Linus B Dittmer
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Wang Z, Shi B, Zhao C, Zeng Y. Hypervalent Chalcogen Bonds Catalysis on the Intramolecular Aza-Michael Reaction of Aminochalcone: Catalytic Performance and Chalcogen Bond Properties. Chemistry 2024:e202401886. [PMID: 38857119 DOI: 10.1002/chem.202401886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Chalcogen bond (ChB) catalysis, as a new type in the field of non-covalent bond catalysis, has become a hot research topic in the field of organocatalysis in recent years. In the present work, we investigated the catalytic performance of a series of hypervalent ChB catalysis based on the intramolecular Aza-Michael reaction of aminochalcone. The reaction includes the carbon-nitrogen bond coupling step (key step) and the proton transfer step. The catalytic performance of mono-dentate pentafluorophenyl chalcogen bond donor ChB1 was comparable to that of bis-dentate chalcogen bond donor ChB4, and stronger than that of mono-dentate chalcogen bond donors ChB2 and ChB3. The formation of the chalcogen bond between the catalyst and the carbonyl oxygen atom of the reactant, causing the charge rearrangement of the reactant and C(1) charge of the -C-Ph group to become more positive, thereby the ChB catalysis promoted the nucleophile reaction. The electron density of the chalcogen bond of the pre-complex, the most positive electrostatic potentials of the catalyst, and the NPA charge of the key atom are proportional to the Gibbs energy barrier of the C-N bond coupling process, which provides an idea to predict the catalytic activity of the ChB catalysis.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Shi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| |
Collapse
|
5
|
Zhang Y, Wang W. Chalcogen-Bond-Assisted Formation of the N→C Dative Bonds in the Complexes between Chalcogenadiazoles/Chalcogenatriazoles and Fullerene C 60. Molecules 2024; 29:2685. [PMID: 38893559 PMCID: PMC11173879 DOI: 10.3390/molecules29112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The existence of the N→C dative bonds in the complexes between N-containing molecules and fullerenes have been verified both theoretically and experimentally. However, finding stable N→C dative bonds is still a highly challenging task. In this work, we investigated computationally the N→C dative bonds in the complexes formed by fullerene C60 with 1,2,5-chalcogenadiazoles, 2,1,3-benzochalcogenadiazoles, and 1,2,4,5-chalcogenatriazoles, respectively. It was found that the N→C dative bonds are formed along with the formation of the N-Ch···C (Ch = S, Se, Te) chalcogen bonds. In the gas phase, from S-containing complexes through Se-containing complexes to Te-containing complexes, the intrinsic interaction energies become more and more negative, which indicates that the N-Ch···C chalcogen bonds can facilitate the formation of the N→C dative bonds. The intrinsic interaction energies are compensated by the large deformation energy of fullerene C60. The total interaction energies of Te-containing complexes are negative, while both total interaction energies of the S-containing complexes and Se-containing complexes are positive. This means that the N→C dative bonds in the Te-containing complexes are more easily observed in experiments in comparison with those in the S-containing complexes and Se-containing complexes. This study provides a new theoretical perspective on the experimental observation of the N→C dative bonds in complexes involving fullerenes. Further, the formation of stable N→C dative bonds in the complexes involving fullerenes can significantly change the properties of fullerenes, which will greatly simulate and expand the application range of fullerenes.
Collapse
Affiliation(s)
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China;
| |
Collapse
|
6
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew Chem Int Ed Engl 2024; 63:e202316667. [PMID: 38116860 DOI: 10.1002/anie.202316667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a β-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex β-face for nucleophilic attack.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Lei F, Liu Q, Zhong Y, Cui X, Yu J, Hu Z, Feng G, Zeng Z, Lu T. Computational Insight into the Nature and Strength of the π-Hole Type Chalcogen∙∙∙Chalcogen Interactions in the XO 2∙∙∙CH 3YCH 3 Complexes (X = S, Se, Te; Y = O, S, Se, Te). Int J Mol Sci 2023; 24:16193. [PMID: 38003384 PMCID: PMC10671658 DOI: 10.3390/ijms242216193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.
Collapse
Affiliation(s)
- Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Xinai Cui
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Jie Yu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Zuquan Hu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China;
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| |
Collapse
|
8
|
Daas KJ, Kooi DP, Peters NC, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Regularized and Opposite Spin-Scaled Functionals from Møller-Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. J Phys Chem Lett 2023; 14:8448-8459. [PMID: 37721318 DOI: 10.1021/acs.jpclett.3c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Noncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields cosκos-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies. With the N4 formal scaling, cosκos-SPL2 is competitive or often outperforms more expensive dispersion-corrected double hybrids for NCIs. The accuracy of cosκos-SPL2 particularly shines for anionic halogen bonded complexes, where it surpasses standard dispersion-corrected DFT by a factor of 3 to 5.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Nina C Peters
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Madabeni A, Orian L. The Key Role of Chalcogenurane Intermediates in the Reduction Mechanism of Sulfoxides and Selenoxides by Thiols Explored In Silico. Int J Mol Sci 2023; 24:ijms24097754. [PMID: 37175462 PMCID: PMC10178455 DOI: 10.3390/ijms24097754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sulfoxides and selenoxides oxidize thiols to disulfides while being reduced back to sulfides and selenides. While the reduction mechanism of sulfoxides to sulfides has been thoroughly explored experimentally as well as computationally, less attention has been devoted to the heavier selenoxides. In this work, we explore the reductive mechanism of dimethyl selenoxide, as an archetypal selenoxide and, for the sake of comparison, the reductive mechanism of dimethyl sulfoxide to gain insight into the role of the chalcogen on the reaction substrate. Particular attention is devoted to the key role of sulfurane and selenurane intermediates. Moreover, the capacity of these system to oxidize selenols rather than thiols, leading to the formation of selenyl sulfide bridges, is explored in silico. Notably, this analysis provides molecular insight into the role of selenocysteine in methionine sulfoxide reductase selenoenzyme. The activation strain model of chemical reactivity is employed in the studied reactions as an intuitive tool to bridge the computationally predicted effect of the chalcogen on the chalcogenoxide as well as on the chalcogenol.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Akhtar MN, AlDamen MA, Zierkiewicz W, Michalczyk M, Khan A, Fouzia K, Sheikh TA, Imran M. Unusual oxygen…oxygen dichalcogen bond in an oxo-centered trinclear iron coordination cluster. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Robinson HT, Haakansson CT, Corkish TR, Watson PD, McKinley AJ, Wild DA. Hydrogen Bonding versus Halogen Bonding: Spectroscopic Investigation of Gas-Phase Complexes Involving Bromide and Chloromethanes. Chemphyschem 2022; 24:e202200733. [PMID: 36504309 DOI: 10.1002/cphc.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen bonding and halogen bonding are important non-covalent interactions that are known to occur in large molecular systems, such as in proteins and crystal structures. Although these interactions are important on a large scale, studying hydrogen and halogen bonding in small, gas-phase chemical species allows for the binding strengths to be determined and compared at a fundamental level. In this study, anion photoelectron spectra are presented for the gas-phase complexes involving bromide and the four chloromethanes, CH3 Cl, CH2 Cl2 , CHCl3 , and CCl4 . The stabilisation energy and electron binding energy associated with each complex are determined experimentally, and the spectra are rationalised by high-level CCSD(T) calculations to determine the non-covalent interactions binding the complexes. These calculations involve nucleophilic bromide and electrophilic bromine interactions with chloromethanes, where the binding motifs, dissociation energies and vertical detachment energies are compared in terms of hydrogen bonding and halogen bonding.
Collapse
Affiliation(s)
- Hayden T Robinson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Christian T Haakansson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Timothy R Corkish
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Peter D Watson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009.,Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Allan J McKinley
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009
| | - Duncan A Wild
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009.,School of Science, Edith Cowan University, Joondalup, Western Australia, 6027
| |
Collapse
|
12
|
Scheiner S, Michalczyk M, Zierkiewicz W. Involvement of Arsenic Atom of AsF 3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models. Molecules 2022; 27:6486. [PMID: 36235021 PMCID: PMC9572024 DOI: 10.3390/molecules27196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
13
|
Scheiner S. On the reliability of atoms in molecules, noncovalent index, and natural bond orbital to identify and quantify noncovalent bonds. J Comput Chem 2022; 43:1814-1824. [DOI: 10.1002/jcc.26983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan Utah USA
| |
Collapse
|
14
|
Ranjbar M, Nowroozi A, Nakhaei E. The first principle study of chalcogen bonds, pnicogen bond and their mutual effects in a set of complexes between the triazine with SHF and PH2F ligands. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Fellowes T, White JM. Simulating chalcogen bonding using molecular mechanics: a pseudoatom approach to model ebselen. J Mol Model 2022; 28:66. [PMID: 35201444 PMCID: PMC8867462 DOI: 10.1007/s00894-021-05023-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
The organoselenium compound ebselen has recently been investigated as a treatment for COVID-19; however, efforts to model ebselen in silico have been hampered by the lack of an efficient and accurate method to assess its binding to biological macromolecules. We present here a Generalized Amber Force Field modification which incorporates classical parameters for the selenium atom in ebselen, as well as a positively charged pseudoatom to simulate the σ-hole, a quantum mechanical phenomenon that dominates the chemistry of ebselen. Our approach is justified using an energy decomposition analysis of a number of density functional theory–optimized structures, which shows that the σ-hole interaction is primarily electrostatic in origin. Finally, our model is verified by conducting molecular dynamics simulations on a number of simple complexes, as well as the clinically relevant enzyme SOD1 (superoxide dismutase), which is known to bind to ebselen. Ebselen is an organoselenium drug that has shown promise for the treatment of a number of conditions. Computational modelling of drug-target complexes is commonly performed to determine the likely mechanism of action, however this is difficult in the case of ebselen, as an important mode of interaction is not simulated using current techniques. We present here an extension to common methods, which accurately captures this interaction. ![]()
Collapse
Affiliation(s)
- Thomas Fellowes
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, Australia.
| | - Jonathan M White
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Queizán M, Sánchez-Lozano M, Mandado M, Hermida-Ramón JM. A Highly Efficient Neutral Anion Receptor in Polar Environments by Synergy of Anion-π Interactions and Hydrogen Bonding. J Chem Inf Model 2021; 61:4455-4461. [PMID: 34396775 DOI: 10.1021/acs.jcim.1c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, it is shown how anion recognition in highly polar solvents by neutral metal-free receptors is feasible when multiple hydrogen bonding and anion-π interactions are suitably combined. A neutral aromatic molecular tweezer functionalized with azo groups is shown to merge these two kinds of interactions in a unique system and its efficiency as an anion catcher in water is evaluated using first-principles quantum methods. Theoretical calculations unequivocally prove the high thermodynamic stability in water of a model anion, bromide, captured within the tweezer's cavity. Thus, static calculations indicate anion-tweezer interaction energies within the range of covalent or ionic bonds and stability constants in water of more than 10 orders of magnitude. First-principles molecular dynamics calculations also corroborate the stability through the time of the anion-tweezer complex in water. It shows that the anion is always found within the tweezer's cavity due to the combination of the tweezer-anion interactions plus a hydrogen bond between the anion and a water molecule that is inside the tweezer's cavity.
Collapse
Affiliation(s)
- Marta Queizán
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Marcosende (As Lagoas) sn, 36310 Vigo, Galicia, Spain
| | - Marta Sánchez-Lozano
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Marcosende (As Lagoas) sn, 36310 Vigo, Galicia, Spain
| | - Marcos Mandado
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Marcosende (As Lagoas) sn, 36310 Vigo, Galicia, Spain
| | - Jose M Hermida-Ramón
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Marcosende (As Lagoas) sn, 36310 Vigo, Galicia, Spain
| |
Collapse
|
17
|
Chalcogen S∙∙∙S Bonding in Supramolecular Assemblies of Cadmium(II) Coordination Polymers with Pyridine-Based Ligands. CRYSTALS 2021. [DOI: 10.3390/cryst11060697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two cadmium(II) coordination polymers, with thiocyanate and pyridine-based ligands e.g., 3-acetamidopyridine (3-Acpy) and niazid (nicotinic acid hydrazide, nia), namely one-dimensional {[Cd(SCN)2(3-Acpy)]}n (1) and two-dimensional {[Cd(SCN)2(nia)]}n (2), are prepared in the mixture of water and ethanol. The adjacent cadmium(II) ions in 1 are bridged by two N,S-thiocyanate ions and an N,O-bridging 3-Acpy molecule, forming infinite one-dimensional polymeric chains, which are assembled by the intermolecular N–H∙∙∙S hydrogen bonds in one direction and by the intermolecular S∙∙∙S chalcogen bonds in another direction. Within the coordination network of 2, the adjacent cadmium(II) ions are bridged by N,S-thiocyanate ions in one direction and by N,O,N’-chelating and bridging nia molecules in another direction. The coordination networks of 2 are assembled by the intermolecular N–H∙∙∙S and N–H∙∙∙N hydrogen bonds and S∙∙∙S chalcogen bonds. Being the only supramolecular interactions responsible for assembling the polymer chains of 1 in the particular direction, the chalcogen S∙∙∙S bonds are more significant in the structure of 1, whilst the chalcogen S∙∙∙S bonds which act in cooperation with the N–H∙∙∙S and N–H∙∙∙N hydrogen bonds are of less significance in the structure of 2.
Collapse
|
18
|
Mehta N, Fellowes T, White JM, Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? J Chem Theory Comput 2021; 17:2783-2806. [PMID: 33881869 DOI: 10.1021/acs.jctc.1c00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Fellowes
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
de Azevedo Santos L, Ramalho TC, Hamlin TA, Bickelhaupt FM. Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study. J Comput Chem 2021; 42:688-698. [PMID: 33543482 PMCID: PMC7986859 DOI: 10.1002/jcc.26489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
We have performed a hierarchical ab initio benchmark and DFT performance study of D2 Ch•••A- chalcogen bonds (Ch = S, Se; D, A = F, Cl). The ab initio benchmark study is based on a series of ZORA-relativistic quantum chemical methods [HF, MP2, CCSD, CCSD(T)], and all-electron relativistically contracted variants of Karlsruhe basis sets (ZORA-def2-SVP, ZORA-def2-TZVPP, ZORA-def2-QZVPP) with and without diffuse functions. The highest-level ZORA-CCSD(T)/ma-ZORA-def2-QZVPP counterpoise-corrected complexation energies (ΔECPC ) are converged within 1.1-3.4 kcal mol-1 and 1.5-3.1 kcal mol-1 with respect to the method and basis set, respectively. Next, we used the ZORA-CCSD(T)/ma-ZORA-def2-QZVPP (ΔECPC ) as reference data for analyzing the performance of 13 different ZORA-relativistic DFT approaches in combination with the Slater-type QZ4P basis set. We find that the three-best performing functionals are M06-2X, B3LYP, and M06, with mean absolute errors (MAE) of 4.1, 4.2, and 4.3 kcal mol-1 , respectively. The MAE for BLYP-D3(BJ) and PBE amount to 8.5 and 9.3 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Lucas de Azevedo Santos
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Chemistry, Institute of Natural SciencesFederal University of LavrasLavrasBrazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Institute of Natural SciencesFederal University of LavrasLavrasBrazil
- Center for Basic and Applied ResearchUniversity Hradec KraloveHradec KraloveCzech Republic
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute for Molecules and MaterialsRadboud University NijmegenNijmegenNetherlands
| |
Collapse
|
20
|
de Azevedo Santos L, van der Lubbe SCC, Hamlin TA, Ramalho TC, Matthias Bickelhaupt F. A Quantitative Molecular Orbital Perspective of the Chalcogen Bond. ChemistryOpen 2021; 10:391-401. [PMID: 33594829 PMCID: PMC8015733 DOI: 10.1002/open.202000323] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
We have quantum chemically analyzed the structure and stability of archetypal chalcogen-bonded model complexes D2 Ch⋅⋅⋅A- (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA-M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen-bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn-Sham molecular orbital (KS-MO) theory in combination with a canonical energy decomposition analysis (EDA). At odds with the commonly accepted view of chalcogen bonding as a predominantly electrostatic phenomenon, we find that chalcogen bonds, just as hydrogen and halogen bonds, have a significant covalent character stemming from strong HOMO-LUMO interactions. Besides providing significantly to the bond strength, these orbital interactions are also manifested by the structural distortions they induce as well as the associated charge transfer from A- to D2 Ch.
Collapse
Affiliation(s)
- Lucas de Azevedo Santos
- Department of Theoretical Chemistry Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Department of Chemistry Institute of Natural SciencesFederal University of LavrasCEP 37200-900Lavras-MGBrazil
| | - Stephanie C. C. van der Lubbe
- Department of Theoretical Chemistry Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Teodorico C. Ramalho
- Department of Chemistry Institute of Natural SciencesFederal University of LavrasCEP 37200-900Lavras-MGBrazil
- Center for Basic and Applied ResearchUniversity Hradec KraloveHradec KraloveCzech Republic
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
21
|
Zierkiewicz W, Michalczyk M, Scheiner S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules 2021; 26:1740. [PMID: 33804617 PMCID: PMC8003638 DOI: 10.3390/molecules26061740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA;
| |
Collapse
|