1
|
Fausset H, Spietz RL, Cox S, Cooper G, Spurzem S, Tokmina-Lukaszewska M, DuBois J, Broderick JB, Shepard EM, Boyd ES, Bothner B. A shift between mineral and nonmineral sources of iron and sulfur causes proteome-wide changes in Methanosarcina barkeri. Microbiol Spectr 2024; 12:e0041823. [PMID: 38179920 PMCID: PMC10846266 DOI: 10.1128/spectrum.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.
Collapse
Affiliation(s)
- Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Savannah Cox
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Spurzem
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M. Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Zhang XG, Wang N, Ma GD, Liu ZY, Wei GX, Liu WJ. Preparation of S-iron-enriched yeast using siderophores and its effect on iron deficiency anemia in rats. Food Chem 2021; 365:130508. [PMID: 34247046 DOI: 10.1016/j.foodchem.2021.130508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Efforts to obtain organic trace elements have been made, including yeast enrichment and transformation, but the application of yeast for this purpose is restricted by poor tolerance and low enrichment. Siderophores play an important role in iron transport. Thus, the role of siderophores in iron transport under high-iron conditions and the application of siderophores in the enrichment of elements was explored. The results showed that some siderophores from iron-tolerant strains promoted yeast growth and increased its intracellular iron content. Among them, siderophore TZT-12 (from LK1110) was the best for promoting yeast growth and iron conversion. The siderophore-iron-enriched yeast (S-iron-enriched yeast) effectively restored the iron concentration, and an iron concentration of 59.40 mg/g was obtained by adding TZT-12. Iron deficiency anemia in rats was significantly mitigated with S-iron-enriched yeast compared with ferrous sulfate. These findings provide a new perspective on the preparation of organic trace elements for supplementation or food fortification.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Nan Wang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Di Ma
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zi-Yu Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Xing Wei
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen-Jie Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
4
|
He Y, Yu S, Liu S, Tian H, Yu C, Tan W, Zhang J, Li Z, Jiang F, Duan L. Data-Independent Acquisition Proteomics Unravels the Effects of Iron Ions on Coronatine Synthesis in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2020; 11:1362. [PMID: 32793123 PMCID: PMC7385143 DOI: 10.3389/fmicb.2020.01362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Coronatine (COR) is a new type of plant growth regulator that is produced by Pseudomonas syringae pathovars and plays an important role in modulating plant growth, development, and tolerance to multiple stresses. However, the factors affecting COR production are not very clear. In this study, the effects of FeCl3 on COR production were researched. The data-independent acquisition (DIA) approach, which is a proteomic quantitative analysis method, was applied to quantitatively trace COR production and proteomic changes in P. syringae pv. tomato DC3000 under different FeCl3 culture conditions. The results showed that COR production increased with the addition of FeCl3 and that there was significant upregulation in the expression of proteins related to COR synthesis and regulation. In addition, FeCl3 also affected the expression of related proteins involved in various metabolic pathways such as glycolysis and the tricarboxylic acid cycle. Moreover, various precursors such as isoleucine and succinate semialdehyde, as well as other related proteins involved in the COR synthesis pathway, were significantly differentially expressed. Our findings revealed the dynamic regulation of COR production in response to FeCl3 at the protein level and showed the potential of using the DIA method to track the dynamic changes of the P. syringae pv. tomato DC3000 proteome during COR production, providing an important reference for future research on the regulatory mechanism of COR biosynthesis and theoretical support for COR fermentation production.
Collapse
Affiliation(s)
- Yan He
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sha Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shaojin Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hao Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunxin Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiming Tan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Jiang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Horticulture, China Agricultural University, Beijing, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
6
|
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:112. [PMID: 29479360 PMCID: PMC5811519 DOI: 10.3389/fpls.2018.00112] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Plant roots communicate with microbes in a sophisticated manner through chemical communication within the rhizosphere, thereby leading to biofilm formation of beneficial microbes and, in the case of plant growth-promoting rhizomicrobes/-bacteria (PGPR), resulting in priming of defense, or induced resistance in the plant host. The knowledge of plant-plant and plant-microbe interactions have been greatly extended over recent years; however, the chemical communication leading to priming is far from being well understood. Furthermore, linkage between below- and above-ground plant physiological processes adds to the complexity. In metabolomics studies, the main aim is to profile and annotate all exo- and endo-metabolites in a biological system that drive and participate in physiological processes. Recent advances in this field has enabled researchers to analyze 100s of compounds in one sample over a short time period. Here, from a metabolomics viewpoint, we review the interactions within the rhizosphere and subsequent above-ground 'signalomics', and emphasize the contributions that mass spectrometric-based metabolomic approaches can bring to the study of plant-beneficial - and priming events.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
7
|
Besserglick J, Olshvang E, Szebesczyk A, Englander J, Levinson D, Hadar Y, Gumienna-Kontecka E, Shanzer A. Ferrichrome Has Found Its Match: Biomimetic Analogues with Diversified Activity Map Discrete Microbial Targets. Chemistry 2017; 23:13181-13191. [DOI: 10.1002/chem.201702647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jenny Besserglick
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Evgenia Olshvang
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Agnieszka Szebesczyk
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joseph Englander
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Dana Levinson
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | | | - Abraham Shanzer
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
8
|
El-Sheekh MM, Mahmoud YAG. Technological Approach of Bioremediation Using Microbial Tools. HANDBOOK OF RESEARCH ON INVENTIVE BIOREMEDIATION TECHNIQUES 2017. [DOI: 10.4018/978-1-5225-2325-3.ch006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bioremediation is applied to eliminate various contaminants, such as organic, inorganic or other pollutants from the environment. Environment worldwide is under great stress due to industrialization and human interfering on the limited natural resources. The release of chemicals pollution needs several techniques to treat some of these chemicals, but due to their cost, new technologies should be developing in order to create cost-effective and eco-friendly bioremediation technologies for environmental conversions. Bioremediation is an increasingly popular using microbial and algae strains for degrading waste contaminants. It is using of microorganisms and its enzymes to protect the environment from severe pollution. Bioremediation may be employed in order to eliminate specific contaminants, such as chlorinated pesticides or other pollutants from the environment. Microorganisms degrade the different pollutants in a natural environment but some modifications can be done to enhance its degradation efficiency at a faster rate in a limited time frame by using the genetically engineered microorganisms and microalgae. In this chapter, the role of the bacteria, fungi and algae in bioremediation of different environmental pollutants was highlighted.
Collapse
|
9
|
Avellan A, Auffan M, Masion A, Levard C, Bertrand M, Rose J, Santaella C, Achouak W. Remote Biodegradation of Ge-Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7791-7798. [PMID: 27347687 DOI: 10.1021/acs.est.6b01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The toxicity of high-aspect-ratio nanomaterials (HARNs) is often associated with oxidative stress. The essential nutrient Fe may also be responsible of oxidative stress through the production of reactive oxygen species. In the present study, it has been examined to what extent adding Fenton reaction promoting Fe impacted the toxicity of an alumino-germanate model HARN. Structural addition of only 0.95% wt Fe to Ge-imogolite not only alleviated the toxicity observed in the case of Fe-free nanotubes but also stimulated bacterial growth. This was attributed to the metabolization of siderophore-mobilized Fe from the nanotube structure. This was evidenced by the regulation of the homeostasis-monitoring intracellular Fe levels. This was accompanied by a biodegradation of the nanotubes approaching 40%, whereas the Fe-free nanomaterial remained nearly untouched.
Collapse
Affiliation(s)
- Astrid Avellan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Melanie Auffan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Armand Masion
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Clément Levard
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Marie Bertrand
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Jérôme Rose
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Wafa Achouak
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| |
Collapse
|
10
|
Schütze E, Ahmed E, Voit A, Klose M, Greyer M, Svatoš A, Merten D, Roth M, Holmström SJM, Kothe E. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19376-19383. [PMID: 25414032 DOI: 10.1007/s11356-014-3842-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms.
Collapse
Affiliation(s)
- Eileen Schütze
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Engy Ahmed
- Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 10691, Stockholm, Sweden
| | - Annekatrin Voit
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Michael Klose
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Matthias Greyer
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Dirk Merten
- Hydrogeology, Institute for Geosciences, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans Knöll Institute HKI, Jena, Germany
| | - Sara J M Holmström
- Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 10691, Stockholm, Sweden
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany.
| |
Collapse
|
11
|
Figueroa LOS, Schwarz B, Richards AM. Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine-, phenylalanine- and proline-containing head groups. Extremophiles 2015; 19:1183-92. [DOI: 10.1007/s00792-015-0790-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/20/2015] [Indexed: 02/02/2023]
|
12
|
Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014; 6:408-20. [PMID: 24481292 DOI: 10.1039/c3mt00359k] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- UMR 7242, Université de Strasbourg-CNRS, ESBS, 300 Boulevard, Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|
13
|
Noël S, Hoegy F, Rivault F, Rognan D, Schalk IJ, Mislin GLA. Synthesis and biological properties of thiazole-analogues of pyochelin, a siderophore of Pseudomonas aeruginosa. Bioorg Med Chem Lett 2014; 24:132-5. [PMID: 24332092 DOI: 10.1016/j.bmcl.2013.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 11/29/2022]
Abstract
Pyochelin is a siderophore common to all strains of Pseudomonas aeruginosa utilized by this Gram-negative bacterium to acquire iron(III). FptA is the outer membrane transporter responsible of ferric-pyochelin uptake in P. aeruginosa. We describe in this Letter the synthesis and the biological properties ((55)Fe uptake, binding to FptA) of several thiazole analogues of pyochelin. Among them we report in this Letter the two first pyochelin analogues able to bind FptA without promoting any iron uptake in P. aeruginosa.
Collapse
Affiliation(s)
- Sabrina Noël
- Team 'Transports Membranaires Bactériens', UMR 7242 CNRS-Université de Strasbourg, 300 Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch-Graffenstaden Cedex, France
| | - Françoise Hoegy
- Team 'Transports Membranaires Bactériens', UMR 7242 CNRS-Université de Strasbourg, 300 Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch-Graffenstaden Cedex, France
| | - Freddy Rivault
- Team 'Transports Membranaires Bactériens', UMR 7242 CNRS-Université de Strasbourg, 300 Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch-Graffenstaden Cedex, France
| | - Didier Rognan
- Team 'Chémogénomique Structurale' Laboratoire d'Innovation Thérapeutique (LIT), UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Isabelle J Schalk
- Team 'Transports Membranaires Bactériens', UMR 7242 CNRS-Université de Strasbourg, 300 Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch-Graffenstaden Cedex, France
| | - Gaëtan L A Mislin
- Team 'Transports Membranaires Bactériens', UMR 7242 CNRS-Université de Strasbourg, 300 Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch-Graffenstaden Cedex, France.
| |
Collapse
|
14
|
Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 2013; 13:707-16. [DOI: 10.1016/j.coph.2013.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
|
15
|
Abstract
Dense and diverse microbial communities are found in many environments. Disentangling the social interactions between strains and species is central to understanding microbes and how they respond to perturbations. However, the study of social evolution in microbes tends to focus on single species. Here, we broaden this perspective and review evolutionary and ecological theory relevant to microbial interactions across all phylogenetic scales. Despite increased complexity, we reduce the theory to a simple null model that we call the genotypic view. This states that cooperation will occur when cells are surrounded by identical genotypes at the loci that drive interactions, with genetic identity coming from recent clonal growth or horizontal gene transfer (HGT). In contrast, because cooperation is only expected to evolve between different genotypes under restrictive ecological conditions, different genotypes will typically compete. Competition between two genotypes includes mutual harm but, importantly, also many interactions that are beneficial to one of the two genotypes, such as predation. The literature offers support for the genotypic view with relatively few examples of cooperation between genotypes. However, the study of microbial interactions is still at an early stage. We outline the logic and methods that help to better evaluate our perspective and move us toward rationally engineering microbial communities to our own advantage.
Collapse
Affiliation(s)
- Sara Mitri
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; ,
| | | |
Collapse
|
16
|
Noël S, Gasser V, Pesset B, Hoegy F, Rognan D, Schalk IJ, Mislin GLA. Synthesis and biological properties of conjugates between fluoroquinolones and a N3''-functionalized pyochelin. Org Biomol Chem 2011; 9:8288-300. [PMID: 22052022 DOI: 10.1039/c1ob06250f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyochelin is a siderophore common to Pseudomonas aeruginosa and several other pathogenic bacteria. A pyochelin functionalized at the N3'' position with a propyl-amine extension was previously synthesized. In the present work we proved that this analog binds FptA, the pyochelin outer membrane receptor, and transports iron(III) efficiently into bacteria. This functionalized pyochelin seemed to be a good candidate for antibiotic vectorization in the framework of a Trojan horse prodrug strategy. In this context, conjugates between pyochelin and three fluoroquinolones (norfloxacin, ciprofloxacin and N-desmethyl-ofloxacin) were synthesized with a spacer arm that was either stable or hydrolyzable in vivo. Some pyochelin-fluoroquinolone conjugates had antibacterial activities in growth inhibition experiments on several P. aeruginosa strains. However, these activities were weaker than those of the antibiotic alone. These properties appeared to be related to both the solubility and bioavailability of conjugates and to the stability of the spacer arm used.
Collapse
Affiliation(s)
- Sabrina Noël
- Team Transports Membranaires Bactériens, UMR 7242 Université de Strasbourg-CNRS, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 2011; 13:2844-54. [PMID: 21883800 DOI: 10.1111/j.1462-2920.2011.02556.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Siderophores are chelators with extremely strong affinity for ferric iron and are best known for their capacity to feed microorganisms with this metal. Despite their preference for iron, they can also chelate numerous other metals with variable affinities. There is also increasing evidence that metals other than iron can activate the production of siderophores by bacteria, thereby implicating siderophores in the homeostasis of metals other than iron and especially heavy metal tolerance. This article considers this new concept that siderophores play a role in protecting bacteria against metal toxicity and discusses the possible contribution of these chelators to the transport of biological relevant metals in addition to iron.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR7242, University of Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|
18
|
Bellenger JP, Wichard T, Xu Y, Kraepiel AML. Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 2011; 13:1395-411. [PMID: 21392197 DOI: 10.1111/j.1462-2920.2011.02440.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N₂ fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.
Collapse
Affiliation(s)
- J-P Bellenger
- Department of Geosciences, PEI, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
19
|
Noël S, Guillon L, Schalk IJ, Mislin GLA. Synthesis of fluorescent probes based on the pyochelin siderophore scaffold. Org Lett 2011; 13:844-7. [PMID: 21294578 DOI: 10.1021/ol1028173] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyochelin is a siderophore common to several pathogenic bacterial strains. Two conjugates, 1 and 2, between the NBD (4-nitro-benzo[1,2,5]oxadiazole) fluorophore and an N3''-functionalized pyochelin were synthesized. These fluorescent probes unexpectedly increased their fluorescence in an aqueous medium in the presence of iron(III) and were transported into bacterial cells.
Collapse
Affiliation(s)
- Sabrina Noël
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, ESBS, Illkirch, France
| | | | | | | |
Collapse
|
20
|
Yeterian E, Martin LW, Lamont IL, Schalk IJ. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:412-418. [PMID: 23766114 DOI: 10.1111/j.1758-2229.2009.00115.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pyoverdine (PVDI) is a siderophore produced by Pseudomonas aeruginosa in order to obtain iron. This molecule is composed of a fluorescent chromophore linked to an octapeptide. Following secretion from the bacteria, PVDI chelates iron ions and the resulting Fe-PVDI complexes are taken up by the bacteria through a cell surface receptor protein. The iron is released in the periplasm and the resulting PVDI is recycled, being secreted out of the bacteria by a previously unknown mechanism. Three genes with the potential to encode an efflux system are adjacent to, and coregulated with, genes required for PVDI-mediated iron transport. Mutation of genes encoding this efflux pump (named PvdRT-OpmQ) prevented recycling of PVDI from the periplasm into the extracellular medium. Fluorescence microscopy showed that in the mutant bacteria PVDI accumulated in the periplasm. Gallium (Ga(3+) ), a metal that cannot be removed from PVDI by reduction, is taken up by P. aeruginosa when chelated by PVDI. Recycling did not occur after transport of PVDI-Ga(3+) and fluorescence accumulated in the periplasm even when the PvdRT-OpmQ efflux pump was functional. Cellular fractionation showed that PVDI-synthesizing bacteria lacking PvdRT-OpmQ secreted PVDI but had an approximately 20-fold increase in the amount of PVD present in the periplasm, consistent with an inability to recycle PVDI. Collectively, these data show that PvdRT-OpmQ is involved in recycling of PVDI from the periplasm to the extracellular medium and recycling requires release of the metal ion from PVDI.
Collapse
Affiliation(s)
- Emilie Yeterian
- Metaux et microorganismes: Chimie, Biologie et Applications. FRE 3211, CNRS-Université de Strasbourg, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France. Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
21
|
|
22
|
Rodriguez-Lucena D, Gaboriau F, Rivault F, Schalk IJ, Lescoat G, Mislin GLA. Synthesis and biological properties of iron chelators based on a bis-2-(2-hydroxy-phenyl)-thiazole-4-carboxamide or -thiocarboxamide (BHPTC) scaffold. Bioorg Med Chem 2009; 18:689-95. [PMID: 20036563 DOI: 10.1016/j.bmc.2009.11.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/17/2009] [Accepted: 11/28/2009] [Indexed: 01/09/2023]
Abstract
Bis-2-(2-hydroxy-phenyl)-thiazole-4-carboxamides and -thiocarboxamides (BHPTCs) form a family of gemini hexacoordinated bis-tridentate chelating scaffolds. Four molecules were synthesized and shown to chelate iron(III) efficiently with a 1:1 stoichiometry. A dithioamide BHPTC displayed promising antiproliferative activity in several cancerous cell lines, making this molecule an interesting lead compound for the design of new iron-chelating anticancer drugs. Conversely, diamide BHPTCs had significant cytoprotective activity against iron overload in HepaRG cells in vitro, and were as efficient as and less toxic than deferoxamine B (DFO).
Collapse
Affiliation(s)
- David Rodriguez-Lucena
- Métaux et Microorganismes: Chimie, Biologie et Applications, IREBS FRE3211-CNRS/Université de Strasbourg, ESBS, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
23
|
Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 2009; 38:1447-59. [PMID: 19787431 DOI: 10.1007/s00726-009-0358-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Pyoverdines, the main siderophores produced by fluorescent Pseudomonads, comprise a fluorescent dihydroxyquinoline chromophore attached to a strain-specific peptide. These molecules are thought to be synthesized as non-fluorescent precursor peptides that are then modified to give functional pyoverdines. Using the fluorescent properties of PVDI, the pyoverdine produced by Pseudomonas aeruginosa PAO1, we were able to show that PVDI was not present in the cytoplasm of the bacteria, but large amounts of a fluorescent PVDI precursor PVDIp were stored in the periplasm. Like PVDI, PVDIp is able to transport iron into P. aeruginosa cells. Mutation of genes encoding the periplasmic PvdN, PvdO and PvdP proteins prevented accumulation of PVDIp in the periplasm and secretion of PVDI into the growth medium, indicating that these three enzymes are involved in PVDI synthesis. Mutation of the gene encoding PvdQ resulted in the presence of fluorescent PVDI precursor in the periplasm and secretion of a functional fluorescent siderophore that had different isoelectric properties to PVDI, suggesting a role for PvdQ in the periplasmic maturation of PVDI. Mutation of the gene encoding the export ABC transporter PvdE prevented PVDI production and accumulation of PVDIp in the periplasm. These data are consistent with a model in which a PVDI precursor peptide is synthesized in the cytoplasm and exported to the periplasm by PvdE where siderophore maturation, including formation of the chromophore moiety, occurs in a process involving the PvdN, PvdO, PvdP and PvdQ proteins.
Collapse
|
24
|
Effect of iron concentration on the growth rate of Pseudomonas syringae and the expression of virulence factors in hrp-inducing minimal medium. Appl Environ Microbiol 2009; 75:2720-6. [PMID: 19270129 DOI: 10.1128/aem.02738-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although chemically defined media have been developed and widely used to study the expression of virulence factors in the model plant pathogen Pseudomonas syringae, it has been difficult to link specific medium components to the induction response. Using a chemostat system, we found that iron is the limiting nutrient for growth in the standard hrp-inducing minimal medium and plays an important role in inducing several virulence-related genes in Pseudomonas syringae pv. tomato DC3000. With various concentrations of iron oxalate, growth was found to follow Monod-type kinetics for low to moderate iron concentrations. Observable toxicity due to iron began at 400 microM Fe(3+). The kinetics of virulence factor gene induction can be expressed mathematically in terms of supplemented-iron concentration. We conclude that studies of induction of virulence-related genes in P. syringae should control iron levels carefully to reduce variations in the availability of this essential nutrient.
Collapse
|
25
|
Liyanage W, Weerasinghe L, Strong RK, Del Valle JR. Synthesis of carbapyochelins via diastereoselective azidation of 5-(ethoxycarbonyl)methylproline derivatives. J Org Chem 2008; 73:7420-3. [PMID: 18698823 DOI: 10.1021/jo801294p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two configurationally stable carbon-based analogues of pyochelin have been prepared from Boc-pyroglutamic acid-tert-butyl ester in 11 and 13 steps. Introduction of the amino group was achieved by a highly diastereoselective electrophilic azidation reaction to afford novel bis-alpha-amino acid proline derivatives.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Department of Chemistry and Biochemistry, New Mexico State University, MSC3C, Las Cruces, New Mexico 88003, USA
| | | | | | | |
Collapse
|
26
|
Schalk IJ. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 2008; 102:1159-69. [DOI: 10.1016/j.jinorgbio.2007.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
27
|
Wasielewski E, Tzou DL, Dillmann B, Czaplicki J, Abdallah MA, Atkinson RA, Kieffer B. Multiple Conformations of the Metal-Bound Pyoverdine PvdI, a Siderophore of Pseudomonas aeruginosa: A Nuclear Magnetic Resonance Study,. Biochemistry 2008; 47:3397-406. [DOI: 10.1021/bi702214s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emeric Wasielewski
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Der-Lii Tzou
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Baudoin Dillmann
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Jerzy Czaplicki
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Mohamed A. Abdallah
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - R. Andrew Atkinson
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Bruno Kieffer
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| |
Collapse
|
28
|
Rivault F, Liébert C, Burger A, Hoegy F, Abdallah MA, Schalk IJ, Mislin GLA. Synthesis of pyochelin-norfloxacin conjugates. Bioorg Med Chem Lett 2006; 17:640-4. [PMID: 17123817 DOI: 10.1016/j.bmcl.2006.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 11/28/2022]
Abstract
Using synthetic functionalized analogues of pyochelin, a siderophore common to several pathogenic Pseudomonas and Burkholderia species, four fluoroquinolone-pyochelin conjugates were efficiently synthesized and evaluated for their biological activities.
Collapse
Affiliation(s)
- Freddy Rivault
- Métaux et Microorganismes: Chimie, Biologie et Applications, UMR 7175-LC1 Institut Gilbert Laustriat CNRS-Université Louis Pasteur (Strasbourg I), ESBS, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Soengas RG, Anta C, Espada A, Paz V, Ares IR, Balado M, Rodríguez J, Lemos ML, Jiménez C. Structural characterization of vanchrobactin, a new catechol siderophore produced by the fish pathogen Vibrio anguillarum serotype O2. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.07.104] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Machkour A, Thallaj NK, Benhamou L, Lachkar M, Mandon D. The Coordination Chemistry of FeCl3 and FeCl2 to Bis[2-(2,3-dihydroxyphenyl)-6-pyridylmethyl](2-pyridylmethyl)amine: Access to a Diiron(III) Compound with an Unusual Pentagonal-Bipyramidal/Square-Pyramidal Environment. Chemistry 2006; 12:6660-8. [PMID: 16789056 DOI: 10.1002/chem.200600276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coordination of FeCl3 to the title ligand yields a mononuclear iron(III) complex 1, which was characterized by spectroscopic techniques and X-ray diffraction. The ligand is (kappa3-N) tridentate and the metal, which lies in a pseudo-octahedral environment, is bound to a phenolate group from the catechol substituent. The dichloroiron(II) complex 2 was easily obtained by metalation of the ligand with FeCl2 and characterized by various spectroscopic techniques. In their cyclic voltammograms both 1 and 2 display the same reversible FeII/FeIII wave at E1/2=10 mV (vs. SCE). Reduction of compound 1 with Zn/Hg yields 2', which displays identical properties to 2. Taken together, these findings indicate that in spite of the different oxidation state of the metal in 2, no major geometrical/structural change is observed at the metal center with respect to 1. The reaction of 2 with dioxygen in the absence of organic substrates proceeds extremely rapidly and yields compound 3, which is a diiron(III) derivative whose X-ray crystal structure is also reported. The possibility of a radical-based mechanism is discussed. Compound 3 displays an unusual geometry: one iron(III) center is seven-coordinate, whereas the other lies in a square-pyramidal environment. The two iron atoms are bridged by the catecholato substituents. To the best of our knowledge, 3 is the first example of a seven-coordinate iron(III) derivative with tris(2-pyridylmethyl)amine ligands.
Collapse
Affiliation(s)
- Ahmed Machkour
- Laboratoire de Chimie Biomimetique des Metaux de Transition, Institut de Chimie, UMR CNRS no. 7177-LC3, Université Louis Pasteur, Institut Le Bel, 4 rue Blaise Pascal, 67070 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
31
|
Mislin GLA, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ. Binding Properties of Pyochelin and Structurally Related Molecules to FptA of Pseudomonas aeruginosa. J Mol Biol 2006; 357:1437-48. [PMID: 16499928 DOI: 10.1016/j.jmb.2006.01.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/29/2022]
Abstract
Pyochelin (Pch) is a siderophore that is produced in iron-limited conditions, by both Pseudomonas aeruginosa and Burkholderia cepacia. This iron uptake pathway could therefore be a target for the development of new antibiotics. Pch is (4'R,2''R/S,4''R)-2'-(2-hydroxyphenyl)-3''-methyl-4',5',2'',3'',4'',5''-hexahydro-[4',2'']bithiazolyl-4''-carboxylic acid, and has three chiral centres located at positions C4', C2'' and C4''. In P.aeruginosa, this siderophore chelates iron in the extracellular medium and transports it into the cells via a specific outer membrane transporter FptA. Docking experiments using the X-ray structure of FptA-Pch-Fe showed that iron-loaded or unloaded Pch diastereoisomers could bind to FptA. This was confirmed by in vivo binding assays. These binding properties and the iron uptake ability were not affected by removal of the C4' chiral centre. After removal of both the C4' and C2'' chiral centres, the molecule still bound to FptA but was unable to transport iron. The overall binding mode of this iron-complexed analogue was inverted. These findings describe the first antagonist of the Pch/FptA iron uptake pathway. Pch also complexes with iron in conjunction with other bidentate ligands such as cepabactin (Cep) or ethylene glycol. Docking experiments showed that such complexes bind to FptA via the Pch molecule. The mixed Pch-Fe-Cep complex was also recognized by FptA, having an affinity intermediate between that for Pch(2)-Fe and Cep(3)-Fe. Finally, the iron uptake properties of the different Pch-related molecules suggested a mechanism for FptA-Pch-Fe complex formation similar to that of the FpvA/Pvd uptake system. All these findings improve our understanding of specificity of the interaction between FptA and its siderophore.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- Métaux et Microorganismes: Chimie, Biologie et Applications, UMR 7175-LC1 Institut Gilbert-Laustriat, CNRS, Université Louis Pasteur (Strasbourg 1), ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
32
|
Rivault F, Schons V, Liébert C, Burger A, Sakr E, Abdallah MA, Schalk IJ, Mislin GL. Synthesis of functionalized analogs of pyochelin, a siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Klumpp C, Burger A, Mislin GL, Abdallah MA. From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. Bioorg Med Chem Lett 2005; 15:1721-4. [PMID: 15745828 DOI: 10.1016/j.bmcl.2005.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/06/2005] [Accepted: 01/13/2005] [Indexed: 11/25/2022]
Abstract
A novel and straightforward total synthesis of cepabactin and its iron (III) complex is described. The latter compound was compared and identified to that obtained from the cultures of Burkholderia cepacia. On treatment of the growth medium of two different strains of B. cepacia with ferric chloride, we have isolated and characterized an unexpected mixed complex of iron (III), cepabactin and pyochelin.
Collapse
Affiliation(s)
- Cédric Klumpp
- Métaux et Microorganismes: Chimie, Biologie et Applications, Département des Récepteurs et Protéines Membranaires (CNRS UPR 9050), Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | |
Collapse
|
34
|
Tzou DL, Wasielewski E, Abdallah MA, Kieffer B, Atkinson RA. A low-temperature heteronuclear NMR study of two exchanging conformations of metal-bound pyoverdin PaA fromPseudomonas aeruginosa. Biopolymers 2005; 79:139-49. [PMID: 16078193 DOI: 10.1002/bip.20343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under iron-deficient conditions, the Gram-negative bacterium Pseudomonas aeruginosa ATCC 15692 secretes a peptidic siderophore, pyoverdin PaA, composed of an aromatic chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline and a partially cyclized octapeptide, D-Ser-L-Arg-D-Ser-L-FoOHOrn-(L-Lys-L-FoOHOrn-L-Thr-L-Thr) (FoOHOrn: delta N-formyl-delta N-hydroxyornithine), in which the C-terminal carboxyl group forms a peptidic bond with the primary amine of the L-Lys side chain. Ferric iron is chelated by the catechol group on the chromophore and the two hydroxyornithine side chains. In aqueous solution, the (1)H-NMR spectrum of pyoverdin PaA-Ga(III), in which Ga(III) is used instead of Fe(III) for spectroscopic purposes, showed clear evidence of exchange broadening, preventing further structural characterization. The use of cryo-solvents allowed measurements to be made at temperatures as low as 253 K where two distinct conformations with roughly equivalent populations could be observed. (13)C and (15)N labeling of pyoverdin PaA enabled complete assignment of both forms of pyoverdin PaA-Ga(III) at 253 and 267 K, using triple-resonance multidimensional NMR experiments commonly applied to doubly labeled proteins.
Collapse
Affiliation(s)
- Der-Lii Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
35
|
Mislin GL, Burger A, Abdallah MA. Synthesis of new thiazole analogues of pyochelin, a siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. A new conversion of thiazolines into thiazoles. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2004; 87:81-237. [PMID: 15079896 DOI: 10.1007/978-3-7091-0581-8_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Germany
| |
Collapse
|
37
|
Palanché T, Blanc S, Hennard C, Abdallah MA, Albrecht-Gary AM. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii. Inorg Chem 2004; 43:1137-52. [PMID: 14753838 DOI: 10.1021/ic034862n] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.
Collapse
Affiliation(s)
- Tania Palanché
- Laboratoire de Physico-Chimie Bioinorganique, CNRS UMR 7509, ECPM, 25, Rue Becquerel, 67200 Strasbourg, France
| | | | | | | | | |
Collapse
|
38
|
Cotelle P, Vezin H. EPR of free radicals formed from 3-hydroxyesculetin and related derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2003. [DOI: 10.1163/156856703765694318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Faraldo-Gómez JD, Sansom MSP. Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 2003; 4:105-16. [PMID: 12563288 DOI: 10.1038/nrm1015] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The outer membrane of Gram-negative bacteria constitutes a permeability barrier that protects the cell from exterior hazards, but also complicates the uptake of nutrients. In the case of iron, the challenge is even greater, because of the scarcity of this indispensable element in the cell's surroundings. To solve this dilemma, bacteria have evolved sophisticated mechanisms whereby the concerted actions of receptor, transporter and energy-transducing proteins ensure that there is a sufficient supply of iron-containing compounds, such as siderophores.
Collapse
Affiliation(s)
- José D Faraldo-Gómez
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
40
|
Wasielewski E, Atkinson RA, Abdallah MA, Kieffer B. The three-dimensional structure of the gallium complex of azoverdin, a siderophore of Azomonas macrocytogenes ATCC 12334, determined by NMR using residual dipolar coupling constants. Biochemistry 2002; 41:12488-97. [PMID: 12369840 DOI: 10.1021/bi025990a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In iron-deficient conditions, Azomonas macrocytogenes ATCC 12334 excretes a fluorescent siderophore called azoverdin, which is composed of a six-amino-acid peptide chain linked to a chromophore. Azoverdin chelates iron(III) very strongly, solubilizing it and transporting it back into the cells using an outer-membrane receptor. This compound is related to the pyoverdins, the peptidic siderophores of Pseudomonas, but differs in the site on the chromophore at which the peptide is covalently linked. This feature identifies azoverdin as a member of a new class of pyoverdins: the isopyoverdins. We report the three-dimensional structure of azoverdin-Ga(III) in solution. The use of orientational constraints obtained from the measurement of residual dipolar couplings using samples dissolved in a liquid crystalline medium allowed us to define the absolute configuration of the metal complex, which is Delta. The structure is characterized by a U-shape adopted by the peptide chain, with the N(delta)-acetyl-N(delta)-hydroxyornithine side chains adopting extended conformations in order to chelate the gallium ion. This conformation leaves a large open space permitting access to the gallium ion. The structural consequences of the particular isopyoverdin chemical structure are discussed in the context of the three-dimensional structures of other pyoverdins.
Collapse
Affiliation(s)
- Emeric Wasielewski
- Laboratoire de Biologie et de Génomique Structurales, Groupe de RMN, UMR 7104 CNRS, ESBS, bd Sébastien Brant, 67400 Illkirch, France
| | | | | | | |
Collapse
|
41
|
Schalk IJ, Abdallah MA, Pattus F. Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 2002; 41:1663-71. [PMID: 11814361 DOI: 10.1021/bi0157767] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under iron-limiting conditions, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin (PaA), which, after complexing iron, is transported back into the cells via its outer membrane receptor FpvA. The recent finding that all FpvA receptors on the bacterial cell surface are loaded with iron-free PaA under iron limiting conditions has raised questions about the mechanism by which P. aeruginosa transports efficiently iron. We used [(3)H]PaA' [(55)Fe]PaA-Fe, and a kinetically stable chromium-PaA complex to show that iron loading of the receptor occurs through a siderophore displacement mechanism in vivo. Moreover, the fluorescence properties of iron-free PaA revealed that, after PaA-Fe uptake and dissociation, the PaA molecule is recycled into the extracellular medium. We used fluorescence resonance energy transfer (FRET) between the PaA chromophore and the FpvA tryptophans in vivo to monitor the kinetics of PaA displacement by PaA-Fe at the cell surface, the dissociation of iron from the siderophore, and the recycling of PaA back to the receptor on the outer membrane of the bacteria in real time. The loading status of FpvA (PaA versus PaA-Fe) was shown to depend on the relative concentration of the two forms of pyoverdin in the growth medium.
Collapse
Affiliation(s)
- Isabelle J Schalk
- Département des Récepteurs et Protéines Membranaires, UPR 9050, CNRS, ESBS, Bld Sébastien Brant, F-67 400 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|
42
|
Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 2001; 39:351-60. [PMID: 11136456 DOI: 10.1046/j.1365-2958.2001.02207.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Under iron limitation, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin, which, after complexing iron, is transported back into the cell via its outer membrane receptor FpvA. Previous studies demonstrated co-purification of FpvA with iron-free PaA and reported similar binding affinities of iron-free pyoverdin and ferric-pyoverdin to purified FpvA. The fluorescence resonance energy transfer between iron-free PaA and the FpvA receptor here reveals the existence of an FpvA-pyoverdin complex in P. aeruginosa in vivo, suggesting that the pyoverdin-loaded FpvA is the normal state of the receptor in the absence of iron. Using tritiated ferric-pyoverdin, it is shown that iron-free PaA binds to the outer membrane but is not taken up into the cell, and that in vitro and, presumably, in vivo ferric-pyoverdin displaces the bound iron-free pyoverdin on FpvA-PaA to form FpvA-PaA-Fe complexes. In vivo, the kinetics of formation of this FpvA-PaA-Fe complex are more than two orders of magnitude faster than in vitro and depend on the presence of TonB. In P. aeruginosa, two tonB genes have been identified (tonB1 and tonB2). TonB1 is directly involved in ferric-pyoverdin uptake, and TonB2 seems to be able partially to replace TonB1 in its role in iron acquisition. However, no effect of TonB1 or TonB2 on the apparent affinity of free pyoverdin to FpvA was observed, and a 17-fold difference was measured between the affinities of the two forms of pyoverdin (PaA and PaA-Fe) to FpvA in the absence of TonB1 or TonB2. The mechanism of iron uptake in P. aeruginosa via the pyoverdin pathway is discussed in view of these new findings.
Collapse
Affiliation(s)
- I J Schalk
- Département des Récepteurs et Protéines Membranaires, UPR 9050 CNRS, ESBS, Bld Sébastien Brant, F-67400 Illkirch, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
43
|
Folschweiller N, Schalk IJ, Celia H, Kieffer B, Abdallah MA, Pattus F. The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review). Mol Membr Biol 2000; 17:123-33. [PMID: 11128971 DOI: 10.1080/09687680050197356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Iron is an important element, essential for the growth of almost all living cells. Because of the high insolubility of iron(III) in aerobic conditions, many gram-negative bacteria produce, under iron limitation, small iron-chelating compounds called siderophores, together with new outer-membrane proteins, which function as receptors for the ferrisiderophores. Pseudomonas aeruginosa, an important human opportunistic pathogen, produces at least three known siderophores when grown in iron-deficient conditions: pyochelin, salicylate and pyoverdin. This review focuses on pyoverdin and on the ability of FpvA to bind iron-free and ferric-PaA pyoverdin, in the light of recent information gained from biochemical and biophysical studies and of the recently solved 3D-structures of the related ferrichrome FhuA and enterobactin FepA receptors in Escherichia coli.
Collapse
Affiliation(s)
- N Folschweiller
- Département des Récepteurs et Protéines Membranaires, UPR 9050 CNRS, Boulevard Sébastien Brant, F-67400 Illkirch, Strasbourg, France
| | | | | | | | | | | |
Collapse
|