1
|
Maret W. Chemistry meets biology in the coordination dynamics of metalloproteins. J Inorg Biochem 2024; 251:112431. [PMID: 38016325 DOI: 10.1016/j.jinorgbio.2023.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Metal sites in proteins are often presented in an idealized way that does not capture the intrinsic dynamic behavior of the protein or the extrinsic factors that affect changes in the coordination of the metal ion in biological space and time. The bioinorganic chemistry possible in healthy and diseased living organisms is limited by prevailing pH values, redox potentials, and availability and concentrations of metal ions and ligands. Changes in any of these parameters and protein-protein or protein-ligand interactions can result in differences in the type of metal ion bound, metal occupancy, and coordination number or geometry. This article addresses the plasticity and complexity of metal coordination in proteins when these parameters are considered. It uses three examples of zinc sites with sulfur donor atoms from cysteines in mammalian proteins: alcohol dehydrogenases, metallothioneins, and zinc transporters of the ZnT (SLC30A) family. Coordination dynamics of the metal sites in these proteins has different purposes; in alcohol dehydrogenases for the metal ion to perform its different roles in the catalytic cycle, in metallothioneins for serving as a metal buffer, and in ZnT zinc transporters for sensing metal ions and moving them through the protein and thus biological membranes. Defining the biological and chemical parameters that determine and affect coordination dynamics of metal ions in proteins will inform future investigations of metalloproteins.
Collapse
Affiliation(s)
- Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
2
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
3
|
Dudev T, Frutos LM, Castaño O. How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins. Metallomics 2020; 12:363-370. [DOI: 10.1039/c9mt00283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results obtained reveal that applying mechanical forces with a given strength and directionality can modulate the metal affinity and selectivity of metal binding sites in metalloproteins.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Luis Manuel Frutos
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| | - Obis Castaño
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| |
Collapse
|
4
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
5
|
Lee YM, Grauffel C, Chen T, Sargsyan K, Lim C. Factors Governing the Different Functions of Zn2+-Sites with Identical Ligands in Proteins. J Chem Inf Model 2019; 59:3946-3954. [DOI: 10.1021/acs.jcim.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
6
|
Richards S, Dawson J, Stutter M. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:275-281. [PMID: 30347346 DOI: 10.1016/j.jenvman.2018.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The presence of high level of heavy metals in aquatic environment is a cause of ecological and environmental concern and thus their removal from water courses is environmentally essential. Four natural inexpensive biosorbents: macro algae (Fucus vesiculosus), crab shells (Cancer pagurus), wood chippings and iron-rich soil were tested for copper (Cu2+) and zinc (Zn2+) removal from aqueous solutions. Batch equilibrations were performed at 1:100 w/v with different initial metal concentrations. Three macro algae pre-treatments (unmodified (UM algae), chemically treated (Ca-T algae) and thermally treated (T-T algae)) were additionally investigated for performance. The sorption capacities were compared with the commercial material biochar and activated carbon. The maximum level of the sorbents for Cu2+ uptake at 15.7 mM/l was attained by the natural material of UM algae (72.37 ± 0.37 mg/g) > Ca-T algae (66.77 ± 0.19 mg/g) > T-T algae (63.06 ± 0.82 mg/g), followed by the commercial material activated carbon (36.71 ± 2.20 mg/g). The maximum level of the sorbents for Zn2+ uptake at 15.3 mM/l was also achieved by the natural material of UM algae (52.40 ± 0.80 mg/g) > Ca-T algae (48.83 ± 2.01 mg/g) > T-T algae (39.57 ± 0.80 mg/g) followed by the commercial material activated carbon (20.78 ± 1.63 mg/g) and biochar (18.07 ± 1.09 mg/g). The results demonstrated that Cu2+ and Zn2+ were effectively removed by these biosorbents at all concentrations. However, at high metals concentrations, the natural material macro algae had greater Cu2+ and Zn2+ sorption capacity than the conventional sorbent activated carbon, and the affinity of these natural biosorbents were greater for Cu2+ than Zn2+. Hence, inexpensive natural and readily available materials showed potential as biosorbents to remediate polluted stream water of toxic metal contaminants.
Collapse
Affiliation(s)
- Samia Richards
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK.
| | - Julian Dawson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Marc Stutter
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| |
Collapse
|
7
|
Ajitha M, Sundar K, Arul Mugilan S, Arumugam S. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets. Proteins 2018; 86:322-331. [PMID: 29235146 DOI: 10.1002/prot.25441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/08/2017] [Accepted: 12/10/2017] [Indexed: 12/31/2022]
Abstract
The advent of whole genome sequencing leads to increasing number of proteins with known amino acid sequences. Despite many efforts, the number of proteins with resolved three dimensional structures is still low. One of the challenging tasks the structural biologists face is the prediction of the interaction of metal ion with any protein for which the structure is unknown. Based on the information available in Protein Data Bank, a site (METALACTIVE INTERACTION) has been generated which displays information for significant high preferential and low-preferential combination of endogenous ligands for 49 metal ions. User can also gain information about the residues present in the first and second coordination sphere as it plays a major role in maintaining the structure and function of metalloproteins in biological system. In this paper, a novel computational tool (ZINCCLUSTER) is developed, which can predict the zinc metal binding sites of proteins even if only the primary sequence is known. The purpose of this tool is to predict the active site cluster of an uncharacterized protein based on its primary sequence or a 3D structure. The tool can predict amino acids interacting with a metal or vice versa. This tool is based on the occurrence of significant triplets and it is tested to have higher prediction accuracy when compared to that of other available techniques.
Collapse
Affiliation(s)
- M Ajitha
- Kalasalingam University, Krishnankoil, Tamil Nadu, India
| | - K Sundar
- Kalasalingam University, Krishnankoil, Tamil Nadu, India
| | - S Arul Mugilan
- Raja Doraisingam Government Arts College, Sivaganga, Tamil Nadu, India
| | - S Arumugam
- Kalasalingam University, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
8
|
Grauffel C, Chu B, Lim C. An efficient protocol for computing the pKa of Zn-bound water. Phys Chem Chem Phys 2018; 20:29637-29647. [DOI: 10.1039/c8cp05029e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present an efficient and accurate method for computing absolute pKw values in Zn2+ complexes.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Benjamin Chu
- Department of Biomathematics
- David Geffen School of Medicine at UCLA
- USA
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
9
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Evidence of a Tetrahedrally Coordinated Divalent Transition Metal Cofactor with Cysteine Ligation. Biochemistry 2017; 56:364-375. [PMID: 28045498 DOI: 10.1021/acs.biochem.6b00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Orlova MA, Trofimova TP, Aliev RA, Orlov AP, Nikulin SV, Proshin AN, Kalmykov SN. 69mZn-containing radiopharmaceuticals: a novel approach to molecular design. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5076-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB. Bioinformatics survey of the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics 2014; 7:156-64. [PMID: 25412156 DOI: 10.1039/c4mt00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
Collapse
Affiliation(s)
- Pik Mun Foong
- Enzyme and Microbial Technology Research Center (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | | | | | | | | |
Collapse
|
12
|
Daniel AG, Farrell NP. The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites. Metallomics 2014; 6:2230-41. [PMID: 25329367 DOI: 10.1039/c4mt00213j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The functional role assumed by zinc in proteins is closely tied to the variable dynamics around its coordination sphere arising by virtue of its flexibility in bonding. Modern experimental and computational methods allow the detection and study of previously unknown features of bonding between zinc and its ligands in protein environment. These discoveries are occurring just in time as novel biological functions of zinc, which involve rather unconventional coordination trends, are emerging. In this sense coordination sphere expansion of structural zinc sites, as observed in our previous experiments, is a novel phenomenon. Here we explore the electronic and structural requirements by simulating this phenomenon in structural zinc sites using DFT computations. For this purpose, we have chosen MPW1PW91 and a mixed basis set combination as the DFT method through benchmarking, because it accurately reproduces structural parameters of experimentally characterized zinc compounds. Using appropriate models, we show that the greater ionic character of zinc coordination would allow for coordination sphere expansion if the steric and electrostatic repulsions of the ligands are attenuated properly. Importantly, through the study of electronic and structural aspects of the models used, we arrive at a comprehensive bonding model, explaining the factors that influence coordination of zinc in proteins. The proposed model along with the existing knowledge would enhance our ability to predict zinc binding sites in proteins, which is today of growing importance given the predicted enormity of the zinc proteome.
Collapse
Affiliation(s)
- A Gerard Daniel
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | |
Collapse
|
13
|
Pomastowski P, Sprynskyy M, Buszewski B. The study of zinc ions binding to casein. Colloids Surf B Biointerfaces 2014; 120:21-7. [DOI: 10.1016/j.colsurfb.2014.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 11/30/2022]
|
14
|
Nanocrystalline Zn1−x Ag x O y thin films evolved through electrodeposition for photoelectrochemical splitting of water. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2285-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Lee YM, Lin YF, Lim C. Factors Controlling the Role of Zn and Reactivity of Zn-bound Cysteines in Proteins: Application to Drug Target Discovery. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Dudev T, Lim C. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem Rev 2013; 114:538-56. [PMID: 24040963 DOI: 10.1021/cr4004665] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | | |
Collapse
|
17
|
Lee YM, Wang YT, Duh Y, Yuan HS, Lim C. Identification of Labile Zn Sites in Drug-Target Proteins. J Am Chem Soc 2013; 135:14028-31. [DOI: 10.1021/ja406300c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | | | - Carmay Lim
- Department of
Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Huang YD, Shuai JW. Induced Dipoles Incorporated into All-Atom Zn Protein Simulations with Multiscale Modeling. J Phys Chem B 2013; 117:6138-48. [DOI: 10.1021/jp4021933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yan-Dong Huang
- Department of Physics
and Institute
of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
| | - Jian-Wei Shuai
- Department of Physics
and Institute
of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory
of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Dudev T, Lim C. Competition among Ca2+, Mg2+, and Na+ for model ion channel selectivity filters: determinants of ion selectivity. J Phys Chem B 2012; 116:10703-14. [PMID: 22889116 DOI: 10.1021/jp304925a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Because voltage-gated ion channels play critical biological roles, understanding how they can discriminate the native metal ion from rival cations in the milieu is of great interest. Although Ca(2+), Mg(2+), and Na(+) are present in comparable concentrations outside the cell, the factors governing the competition among these cations for the selectivity filter of voltage-gated Ca(2+) ion channel remain unclear. Using density functional theory combined with continuum dielectric methods, we evaluate the effect of (1) the number, chemical type, and charge of the ligands lining the pore, (2) the pore's rigidity, size, symmetry, and solvent accessibility, and (3) the Ca(2+) hydration number outside the selectivity filter on the competition among Ca(2+), Mg(2+), and Na(+) in model selectivity filters. The calculations show how the outcome of this competition depends on the interplay between electronic and solvation effects. Selectivity for monovalent Na(+) over divalent Ca(2+)/Mg(2+) is achieved when solvation effects outweigh electrostatic effects; thus filters comprising a few weak charge-donating groups such as Ser/Thr side chains, where electrostatic effects are relatively weak and are easily overcome by solvation effects, are Na(+)-selective. In contrast, selectivity for divalent Ca(2+)/Mg(2+) over monovalent Na(+) is achieved when metal-ligand electrostatic effects outweigh solvation effects. The key differences in selectivity between Mg(2+) and Ca(2+) lie in the pore size, oligomericity, and solvent accessibility. The results, which are consistent with available experimental data, reveal how the structure and composition of the ion channel selectivity pore had adapted to the specific physicochemical properties of the native metal ion to enhance the competitiveness of the native metal toward rival cations.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
20
|
Dudev T, Lim C. Factors Governing the Na+ vs K+ Selectivity in Sodium Ion Channels. J Am Chem Soc 2010; 132:2321-32. [DOI: 10.1021/ja909280g] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
21
|
Kuppuraj G, Dudev M, Lim C. Factors Governing Metal−Ligand Distances and Coordination Geometries of Metal Complexes. J Phys Chem B 2009; 113:2952-60. [DOI: 10.1021/jp807972e] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gopi Kuppuraj
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and Department of Chemistry and College of Life Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan
| | - Minko Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and Department of Chemistry and College of Life Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and Department of Chemistry and College of Life Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
22
|
Frison G, Ohanessian G. Metal-histidine-glutamate as a regulator of enzymatic cycles: a case study of carbonic anhydrase. Phys Chem Chem Phys 2009; 11:374-83. [DOI: 10.1039/b812916a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Dudev T, Lim C. Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys 2008; 37:97-116. [PMID: 18573074 DOI: 10.1146/annurev.biophys.37.032807.125811] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review highlights insights gained from computational studies on protein-metal recognition. We systematically dissect the various factors governing metal binding affinity and selectivity in proteins starting from (a) the intrinsic properties of the metal and neighboring metal cations (if present), to (b) the primary coordination sphere, (c) the second coordination shell, (d) the protein matrix, (e) the bulk solvent, and (f) competing non-protein ligands from the surrounding biological environment. The results herein reveal the fundamental principles and the molecular bases underlying protein-metal recognition, which serve as a guide to engineer novel metalloproteins with programmed properties.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | | |
Collapse
|
24
|
Ataie NJ, Hoang QQ, Zahniser MPD, Tu Y, Milne A, Petsko GA, Ringe D. Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Biochemistry 2008; 47:7673-83. [PMID: 18576673 DOI: 10.1021/bi702188e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization. To test the correlation between charge/dipole polarity and ligand binding affinity, structure-function studies were carried out on the dizinc aminopeptidase from Vibrio proteolyticus. Alanine substitutions of S228 and M180 resulted in catalytically diminished enzymes whose crystal structures show very little change in the positions of the metal ions and the protein residues. However, more detailed inspections of the crystal structures show small positional changes that account for differences in the zinc ion coordination geometry. Measurements of the binding affinity of leucine phosphonic acid, a transition state analogue, and leucine, a product, show a correlation between coordination geometry and ligand binding affinity. These results suggest that the coordination number and polarity may tune the electrophilicity of zinc. This may have provided the evolving enzyme with the ability to discriminate between reaction coordinate species.
Collapse
Affiliation(s)
- Niloufar J Ataie
- Rosenstiel Basic Medical Sciences Research Center and Department of Biochemistry, Program in Biochemistry and Biophysics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Dudev T, Lim C. Effect of carboxylate-binding mode on metal binding/selectivity and function in proteins. Acc Chem Res 2007; 40:85-93. [PMID: 17226948 DOI: 10.1021/ar068181i] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We delineate the factors governing the carboxylate-binding mode (monodentate vs bidentate) in metalloproteins. We reveal how the carboxylate-binding mode affects the binding affinity and selectivity of a metal ion as well as the function of a metalloprotein using Ca2+-binding proteins and enzymes (ribonuclease H1, phosphoserine phosphatase, and ribonucleotide reductase) as examples. The collected data indicate that a carboxylate monodentate left arrow over right arrow bidentate switch, in addition to other structural factors, could be used to fine tune the metal-binding site affinity and/or selectivity, thus modifying the function/properties of the metalloprotein.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
26
|
Sakharov DV, Lim C. Zn protein simulations including charge transfer and local polarization effects. J Am Chem Soc 2005; 127:4921-9. [PMID: 15796557 DOI: 10.1021/ja0429115] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nearly half of all proteins contain metal ions, which perform a wide variety of specific functions associated with life processes. However, insights into the local/global, structural and dynamical fluctuations in metalloproteins from molecular dynamics simulations have been hampered by the "conventional" potential energy function (PEF) used in nonmetalloprotein simulations, which does not take into the nonnegligible charge transfer and polarization effects in many metal complexes. Here, we have carried out molecular dynamics simulations of Zn(2+) bound to Cys(-) and/or His(0) in proteins using both the conventional PEF and a novel PEF that accounts for the significant charge transfer and polarization effects in these Zn complexes. Simulations with the conventional PEF yield a nontetrahedral Cys(2)His(2) Zn-binding site and significantly overestimate the experimental Zn-S(Cys(-)) distance. In contrast, simulations with the new PEF accurately reproduce the experimentally observed tetrahedral structures of Cys(2)His(2) and Cys(4) Zn-binding sites in proteins, even when the simulation started from a nontetrahedral Zn(2+) configuration. This suggests that simulations with the new PEF could account for coordinational changes at Zn, which occurs during the folding/unfolding of Zn-finger proteins and certain enzymatic reactions The strategy introduced here can easily be applied to investigate Zn(2+) interacting with protein ligands other than Cys(-) and His(0). It can also be extended to study the interaction of other metals that have significant charge transfer and polarization effects.
Collapse
Affiliation(s)
- Dmitri V Sakharov
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|