1
|
Lutz PB, Coombs WR, Bayse CA. Determination of Structural Factors Contributing to Protection of Zinc Fingers in Estrogen Receptor α through Molecular Dynamic Simulations. J Phys Chem B 2025; 129:2226-2234. [PMID: 39937829 PMCID: PMC11873919 DOI: 10.1021/acs.jpcb.4c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
The ERα transcription factor that induces tumor growth is a potential target for breast cancer treatment. Each monomer of the ERα DNA-binding domain (ERαDBD) homodimer has two conserved (Cys)4-type zinc fingers, ZF1 (N-terminal) and ZF2 (C-terminal). Electrophilic agents release Zn2+ by oxidizing the coordinating Cys of the more labile ZF2 to inhibit dimerization and DNA binding. Microsecond-length molecular dynamics (MD) simulations show that greater flexibility of ZF2 in the ERαDBD monomer leaves its Cys more solvent accessible and less shielded from electrophilic attack by sulfur-centered hydrogen bonds than ZF1 which is buried in the protein. In the unreactive DNA-bound dimer, the formation of the dimer interface between the highly flexible D-box motif of ZF2 decreases the solvent accessibility of its Cys toward electrophiles and increases the populations of sulfur-containing hydrogen bonds that reduce their nucleophilicity. Examination of these factors in ERαDBD and other proteins with labile ZF motifs may reveal new targets to treat viral infections and cancer.
Collapse
Affiliation(s)
- Patricia B. Lutz
- Department
of Science & Mathematics, Regent University, Virginia Beach, Virginia 23464, United States
| | - Wesley R. Coombs
- Department
of Science & Mathematics, Regent University, Virginia Beach, Virginia 23464, United States
| | - Craig A. Bayse
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
2
|
Yu Y, Tian W, Grauffel C, Lin W, Hsieh M, Wu P, Lee H, Peng C, Lin P, Chu H, Lim C, Chang TW. An Antibody-Drug Conjugate for Multiple Myeloma Prepared by Multi-Arm Linkers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307852. [PMID: 38477561 PMCID: PMC11132082 DOI: 10.1002/advs.202307852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Indexed: 03/14/2024]
Abstract
First-line treatment of multiple myeloma, a prevalent blood cancer lacking a cure, using anti-CD38 daratumumab antibody and lenalidomide is often inadequate due to relapse and severe side effects. To enhance drug safety and efficacy, an antibody-drug conjugate, TE-1146, comprising six lenalidomide drug molecules site-specifically conjugated to a reconfigured daratumumab to deliver cytotoxic lenalidomide to tumor cells is developed. TE-1146 is prepared using the HighDAR platform, which employs i) a maleimide-containing "multi-arm linker" to conjugate multiple drug molecules creating a drug bundle, and ii) a designed peptide with a Zn2+-binding cysteine at the C-termini of a reconfigured daratumumab for site-specific drug bundle conjugation. It is shown that TE-1146 remains intact and effectively enters CD38-expressing tumor cells, releasing lenalidomide, leading to enhanced cell-killing effects compared to lenalidomide/daratumumab alone or their combination. This reveals the remarkable potency of lenalidomide once internalized by myeloma cells. TE-1146 precisely delivers lenalidomide to target CD38-overexpressing tumor cells. In contrast, lenalidomide without daratumumab cannot easily enter cells, whereas daratumumab without lenalidomide relies on Fc-dependent effector functions to kill tumor cells.
Collapse
Affiliation(s)
- Yueh‐Hsiang Yu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Wei‐Ting Tian
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | | | - Wei‐Chen Lin
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Ming‐Yu Hsieh
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Pei‐Wen Wu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Hui‐Ju Lee
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Chi‐Jiun Peng
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Pei‐Hsuan Lin
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Hsing‐Mao Chu
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| | - Carmay Lim
- Institute of Biomedical SciencesAcademia SinicaAcademia Rd.Taipei115Taiwan
| | - Tse Wen Chang
- Immunwork, Inc.Academia Rd., Sec. 1, NangangTaipei115Taiwan
| |
Collapse
|
3
|
Görg R, Büttgenbach A, Jakobs J, Kurtoğlu Babayev FH, Rolles B, Rink L, Wessels I. Leukemia cells accumulate zinc for oncofusion protein stabilization. J Nutr Biochem 2024; 123:109482. [PMID: 37839758 DOI: 10.1016/j.jnutbio.2023.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) are both hematological malignancies characterized by genetic alterations leading to the formation of oncofusion proteins. The classical chromosomal aberrations in APL and CML result in the PML-RARα and BCR-ABL1 oncofusion proteins, respectively. Interestingly, our flow cytometric analyses revealed elevated free intracellular zinc levels in various leukemia cells, which may play a role in stabilizing oncofusion proteins in leukemia and thus support cell proliferation and malignancy. Long-term zinc deficiency resulted in the degradation of PML-RARα in NB4 cells (APL cell line) and of BCR-ABL1 in K562 cells (CML cell line). This degradation may be explained by increased caspase 3 activity observed in zinc deficient cells, whereas zinc reconstitution normalized the caspase 3 activity and abolished zinc deficiency-induced oncofusion protein degradation. In NB4 cells, fluorescence microscopic images further indicated enlarged and enriched lysosomes during zinc deficiency, suggesting increased rates of autophagy. Moreover, NB4 cells exhibited increased expression of the zinc transporters ZIP2, ZIP10 and ZnT3 during zinc deficiency and revealed excessive accumulation of zinc in contrast to healthy peripheral blood mononuclear cells (PBMCs), when zinc was abundantly available extracellularly. Our results highlight the importance of altered zinc homeostasis for some characteristics in leukemia cells, uncover potential pathways underlying the effects of zinc deficiency in leukemia cells, and provide potential alternative strategies by which oncofusion proteins can be degraded.
Collapse
Affiliation(s)
- Richard Görg
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Büttgenbach
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jana Jakobs
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Benjamin Rolles
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center of Allergy & Environment (ZAUM), Technical University and Helmholtzzentrum Munich, Munich, Germany.
| |
Collapse
|
4
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
5
|
Chen T, Fei CY, Chen YP, Sargsyan K, Chang CP, Yuan HS, Lim C. Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir. ACS Pharmacol Transl Sci 2021; 4:898-907. [PMID: 33855277 PMCID: PMC8009100 DOI: 10.1021/acsptsci.1c00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 01/18/2023]
Abstract
The SARS-CoV-2 replication and transcription complex (RTC) comprising nonstructural protein (nsp) 2-16 plays crucial roles in viral replication, reducing the efficacy of broad-spectrum nucleoside analog drugs such as remdesivir and evading innate immune responses. Most studies target a specific viral component of the RTC such as the main protease or the RNA-dependent RNA polymerase. In contrast, our strategy is to target multiple conserved domains of the RTC to prevent SARS-CoV-2 genome replication and to create a high barrier to viral resistance and/or evasion of antiviral drugs. We show that the clinically safe Zn-ejector drugs disulfiram and ebselen can target conserved Zn2+ sites in SARS-CoV-2 nsp13 and nsp14 and inhibit nsp13 ATPase and nsp14 exoribonuclease activities. As the SARS-CoV-2 nsp14 domain targeted by disulfiram/ebselen is involved in RNA fidelity control, our strategy allows coupling of the Zn-ejector drug with a broad-spectrum nucleoside analog that would otherwise be excised by the nsp14 proofreading domain. As proof-of-concept, we show that disulfiram/ebselen, when combined with remdesivir, can synergistically inhibit SARS-CoV-2 replication in Vero E6 cells. We present a mechanism of action and the advantages of our multitargeting strategy, which can be applied to any type of coronavirus with conserved Zn2+ sites.
Collapse
Affiliation(s)
- Ting Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Sargsyan K, Lin CC, Chen T, Grauffel C, Chen YP, Yang WZ, Yuan HS, Lim C. Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors. Chem Sci 2020; 11:9904-9909. [PMID: 34094251 PMCID: PMC8162115 DOI: 10.1039/d0sc02646h] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 04/22/2021] [Accepted: 08/29/2020] [Indexed: 11/21/2022] Open
Abstract
We present a near-term treatment strategy to tackle pandemic outbreaks of coronaviruses with no specific drugs/vaccines by combining evolutionary and physical principles to identify conserved viral domains containing druggable Zn-sites that can be targeted by clinically safe Zn-ejecting compounds. By applying this strategy to SARS-CoV-2 polyprotein-1ab, we predicted multiple labile Zn-sites in papain-like cysteine protease (PLpro), nsp10 transcription factor, and nsp13 helicase. These are attractive drug targets because they are highly conserved among coronaviruses and play vital structural/catalytic roles in viral proteins indispensable for virus replication. We show that five Zn-ejectors can release Zn2+ from PLpro and nsp10, and clinically-safe disulfiram and ebselen can not only covalently bind to the Zn-bound cysteines in both proteins, but also inhibit PLpro protease. We propose combining disulfiram/ebselen with broad-spectrum antivirals/drugs to target different conserved domains acting at various stages of the virus life cycle to synergistically inhibit SARS-CoV-2 replication and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
| | - Chien-Chu Lin
- Institute of Molecular Biology, Academia Sinica Taipei 115 Taiwan
| | - Ting Chen
- Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica Taipei 115 Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica Taipei 115 Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica Taipei 115 Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
- Department of Chemistry, National Tsing Hua University Hsinchu 300 Taiwan
| |
Collapse
|
7
|
Mazmanian K, Sargsyan K, Lim C. How the Local Environment of Functional Sites Regulates Protein Function. J Am Chem Soc 2020; 142:9861-9871. [PMID: 32407086 DOI: 10.1021/jacs.0c02430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins form complex biological machineries whose functions in the cell are highly regulated at both the cellular and molecular levels. Cellular regulation of protein functions involves differential gene expressions, post-translation modifications, and signaling cascades. Molecular regulation, on the other hand, involves tuning an optimal local protein environment for the functional site. Precisely how a protein achieves such an optimal environment around a given functional site is not well understood. Herein, by surveying the literature, we first summarize the various reported strategies used by certain proteins to ensure their correct functioning. We then formulate three key physicochemical factors for regulating a protein's functional site, namely, (i) its immediate interactions, (ii) its solvent accessibility, and (iii) its conformational flexibility. We illustrate how these factors are applied to regulate the functions of free/metal-bound Cys and Zn sites in proteins.
Collapse
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Lee YM, Grauffel C, Chen T, Sargsyan K, Lim C. Factors Governing the Different Functions of Zn2+-Sites with Identical Ligands in Proteins. J Chem Inf Model 2019; 59:3946-3954. [DOI: 10.1021/acs.jcim.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
9
|
Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2526-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Orlova M, Nikolaev A, Trofimova T, Orlov A, Severin A, Kalmykov S. Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Nanomedicine (Lond) 2018. [DOI: 10.24075/brsmu.2018.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanoparticles for drug delivery are the subject of extensive research. Importantly, they can transform in size during synthesis or actual use, thereby changing their cytotoxic properties. The aim of the present work was to study the tendency of [67Zn] porphyrin-fullerene nanoparticles (BFNP) to aggregate over time and to compare the properties of hydroxyapatite (HAP) nanoparticles obtained through 3 different techniques. We found that aggregation of BFNP nanoparticles does not affect their function but attenuates their cytotoxicity against leukemia cells. We were also able to obtain HAP nanoparticles with programmable properties (such as size, shape or the capacity to adsorb metal ions, ligands and chemical complexes) through enzymatic synthesis by varying its conditions. The synthesized HAP nanoparticles contain short-lived isotopes of zinc and copper (in the form of ions and complexes with pyrimidine or thiazine derivatives). These tumoricidal components (a radionuclide and a ligand or a complex) determine the diagnostic and therapeutic potential of the obtained radiopharmaceutical agents.
Collapse
Affiliation(s)
- M.A. Orlova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Department of Biochemistry and Pharmacology, Dmitry Rogachev National Medical Research Centre of Hematology, Oncology and Immunology, Moscow
| | - A.L. Nikolaev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - T.P. Trofimova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Institute of Physiological Active Compounds of RAS, Chernogolovka
| | - A.P. Orlov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - A.V. Severin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - S.N. Kalmykov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| |
Collapse
|
11
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
The role of zinc and its compounds in leukemia. J Biol Inorg Chem 2018; 23:347-362. [DOI: 10.1007/s00775-018-1545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
|
13
|
|
14
|
Grauffel C, Chu B, Lim C. An efficient protocol for computing the pKa of Zn-bound water. Phys Chem Chem Phys 2018; 20:29637-29647. [DOI: 10.1039/c8cp05029e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present an efficient and accurate method for computing absolute pKw values in Zn2+ complexes.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Benjamin Chu
- Department of Biomathematics
- David Geffen School of Medicine at UCLA
- USA
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
15
|
Grauffel C, Lim C. Factors governing when a metal-bound water is deprotonated in proteins. Phys Chem Chem Phys 2018; 20:29625-29636. [DOI: 10.1039/c8cp04776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluate the extent to which the pKw depends on the type, number, and metal-binding mode of the first-shell ligands, the metal–ligand bond distances, first-shell⋯second-shell H-bonding interactions, and the protein environment.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
16
|
Aliev RA, Aleshin GS, Belyshev SS, Ishkhanov BS, Priselkova AB, Pozharskaya VY, Khankin VV, Orlova MA, Kalmykov SN. Photonuclear production of carrier-free radionuclides: 69mZn. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1743-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
|
18
|
Orlova MA, Trofimova TP, Aliev RA, Orlov AP, Nikulin SV, Proshin AN, Kalmykov SN. 69mZn-containing radiopharmaceuticals: a novel approach to molecular design. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5076-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Lee YM, Duh Y, Wang ST, Lai MMC, Yuan HS, Lim C. Using an Old Drug to Target a New Drug Site: Application of Disulfiram to Target the Zn-Site in HCV NS5A Protein. J Am Chem Soc 2016; 138:3856-62. [PMID: 26928525 DOI: 10.1021/jacs.6b00299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In viral proteins, labile Zn-sites, where Zn(2+) is crucial for maintaining the native protein structure but the Zn-bound cysteines are reactive, are promising drug targets. Here, we aim to (i) identify labile Zn-sites in viral proteins using guidelines established from our previous work and (ii) assess if clinically safe Zn-ejecting agents could eject Zn(2+) from the predicted target site and thus inhibit viral replication. As proof-of-concept, we identified a labile Zn-site in the hepatitis C virus (HCV) NS5A protein and showed that the antialcoholism drug, disulfiram, could inhibit HCV replication to a similar extent as the clinically used antiviral agent, ribavirin. The discovery of a novel viral target and a new role for disulfiram in inhibiting HCV replication will enhance the therapeutic armamentarium against HCV. The strategy presented can also be applied to identify labile sites in other bacterial or viral proteins that can be targeted by disulfiram or other clinically safe Zn-ejectors.
Collapse
Affiliation(s)
- Yu-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan
| | - Yulander Duh
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Shih-Ting Wang
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Michael M C Lai
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| |
Collapse
|
20
|
Daniel AG, Farrell NP. The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites. Metallomics 2014; 6:2230-41. [PMID: 25329367 DOI: 10.1039/c4mt00213j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The functional role assumed by zinc in proteins is closely tied to the variable dynamics around its coordination sphere arising by virtue of its flexibility in bonding. Modern experimental and computational methods allow the detection and study of previously unknown features of bonding between zinc and its ligands in protein environment. These discoveries are occurring just in time as novel biological functions of zinc, which involve rather unconventional coordination trends, are emerging. In this sense coordination sphere expansion of structural zinc sites, as observed in our previous experiments, is a novel phenomenon. Here we explore the electronic and structural requirements by simulating this phenomenon in structural zinc sites using DFT computations. For this purpose, we have chosen MPW1PW91 and a mixed basis set combination as the DFT method through benchmarking, because it accurately reproduces structural parameters of experimentally characterized zinc compounds. Using appropriate models, we show that the greater ionic character of zinc coordination would allow for coordination sphere expansion if the steric and electrostatic repulsions of the ligands are attenuated properly. Importantly, through the study of electronic and structural aspects of the models used, we arrive at a comprehensive bonding model, explaining the factors that influence coordination of zinc in proteins. The proposed model along with the existing knowledge would enhance our ability to predict zinc binding sites in proteins, which is today of growing importance given the predicted enormity of the zinc proteome.
Collapse
Affiliation(s)
- A Gerard Daniel
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | |
Collapse
|