1
|
Mousavi H, Zeynizadeh B, Sepehraddin F. Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe 3O 4@APTMS@Cp 2ZrCl x (x = 0, 1, 2) nanocatalyst. NANOSCALE ADVANCES 2025; 7:2528-2553. [PMID: 40070439 PMCID: PMC11892742 DOI: 10.1039/d4na00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
The conversion of nitro(hetero)arenes to corresponding (hetero)aryl amines and other practical organic compounds plays a crucial role in various sciences, especially environmental remediation and public health. In the current research work, diverse green and efficient strategies for the convenient reduction (hydrogenation) and one-pot two-step reductive acetylation of nitro(hetero)arenes using a core-shell-type mesoporous zirconocene-containing magnetically recoverable nanocomposite (viz. Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2)) as a powerful nanocatalytic system have been developed. In the presented organic transformations, the superparamagnetic Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2) nanocomposite exhibited satisfactory turnover numbers (TONs) and turnover frequencies (TOFs), along with acceptable reusability. On the other hand, we investigated the potential biological effect of the synthesized (hetero)aryl amines and N-(hetero)aryl acetamides against the transmembrane domain (TMD) of the human N-methyl-d-aspartate (hNMDA) receptor based on molecular docking studies. Furthermore, the drug-likeness properties of our hit compound (viz. N-(3-(1-hydroxyethyl)phenyl)acetamide) have been scrutinized by in silico ADMET analyses.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Farhad Sepehraddin
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
2
|
Mavaddatiyan L, Zeynizadeh B. A new strategy for immobilization of copper on the Fe 3O 4@EDTA nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines. Heliyon 2024; 10:e35062. [PMID: 39166007 PMCID: PMC11334667 DOI: 10.1016/j.heliyon.2024.e35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct immobilization of copper metal powder on the Fe3O4@EDTA nanocomposite. The as-prepared Fe3O4@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The resulting Fe3O4@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic activity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 °C. Notably, the applied Cu(II)-containing nanocatalyst was efficiently recovered from the reaction mixture using an external magnetic field and could be reused successfully for five cycles. The protocol developed in this study offers several advantages in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy recovery and catalyst reuse, making it more ecologically and economically attractive.
Collapse
Affiliation(s)
- Leila Mavaddatiyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Mousavi H, Zeynizadeh B, Hasanpour Galehban M. Ni II-containing l-glutamic acid cross-linked chitosan anchored on Fe 3O 4/ f-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes. NANOSCALE ADVANCES 2024; 6:3961-3977. [PMID: 39050942 PMCID: PMC11265578 DOI: 10.1039/d4na00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
In this research, new and eye-catching catalytic applications of the nickelII (NiII) nanoparticles (NPs)-containing l-glutamic acid cross-linked chitosan anchored on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu/NiII) system, which was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) and elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and vibrating sample magnetometry (VSM), have been introduced for the environmentally benign and efficient reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes in water at 60 °C under an air atmosphere. It is worth noting that the NiII-containing hybrid nanocatalyst, in the mentioned organic reactions, showed short reaction times, high yields of the desired products, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), and also satisfactory magnetic recycling and reusability performance even after ten times of reuse. As another significant point, all the titled organic transformations have been carried out in water as an entirely favorable and green solvent for chemical reactions.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | | |
Collapse
|
4
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
5
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
6
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
7
|
Galehban MH, Zeynizadeh B, Mousavi H. Introducing Fe3O4@SiO2@KCC-1@MPTMS@CuII catalytic applications for the green one-pot syntheses of 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones and 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
9
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
10
|
A concise and focused overview upon arylglyoxal monohydrates-based one-pot multi-component synthesis of fascinating potentially biologically active pyridazines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
12
|
Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Davasaz Rabbani MA, Khalili B, Saeidian H. Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra. RSC Adv 2020; 10:35729-35739. [PMID: 35517118 PMCID: PMC9056902 DOI: 10.1039/d0ra06934e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
The present study deals with designing and synthesizing novel dyes using the drug combination of edaravone and azo compounds which can be used as an indicator for anions and cations. The desired product synthesis was accomplished via a two-step process involving diazotizing the aromatic amines followed by the resultant salts coupling with edaravone. The resulting dyes were obtained with high yields under mild conditions. The structures of the dyes were identified with UV-vis, FT-IR, 1H NMR and 13C NMR spectra and CHN analysis. To investigate the solvatochromism effect, the interaction of different solvents with the selected dyes was evaluated using several parameters including the dielectric constant, refractive index, hydrogen bond donating ability, hydrogen bond accepting ability and dipolarity/polarizability scale. To achieve deep understanding about the stability and geometrical characteristics of the azo–hydrazo tautomers of the synthesized dyes and their UV-visible spectra prediction, some DFT calculations were also carried out on the synthesized dyes. The antibacterial activities of some synthesized compounds were also evaluated using the disk diffusion method. The results revealed different activity of the selected synthesized dyes for antibacterial tests against selected Gram positive and Gram negative bacteria. The present study deals with designing and synthesizing novel dyes using the drug combination of edaravone and azo compounds which can be used as an indicator for anions and cations.![]()
Collapse
Affiliation(s)
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan P. O. Box 41335-1914 Rasht Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU) P. O. Box: 19395-4697 Tehran Iran
| |
Collapse
|
14
|
An efficient one-pot three-component synthesis of 7-amino-2, 4-dioxo-5-aryl-1,3,4,5-tetrahydro-2 H-pyrano[2,3-d]pyrimidine-6-carbonitriles catalyzed by SnO2/SiO2 nanocomposite. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04145-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zeynizadeh B, Sepehraddin F, Mousavi H. Green and Highly Efficient Strategies for the Straightforward Reduction of Carboxylic Acids to Alcohols Using Four Different and Affordable Types of Hydrogen Donors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Farhad Sepehraddin
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
17
|
Bakhshi R, Zeynizadeh B, Mousavi H. Green, rapid, and highly efficient syntheses of
α
,
α′
‐bis[(aryl or allyl)idene]cycloalkanones and 2‐[(aryl or allyl)idene]‐1‐indanones as potentially biologic compounds via solvent‐free microwave‐assisted Claisen–Schmidt condensation catalyzed by MoCl
5. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reza Bakhshi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
18
|
Zeynizadeh B, Mohammad Aminzadeh F, Mousavi H. Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03794-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Zeynizadeh B, Mousavi H, Zarrin S. Application of Cu(Hdmg)
2
as a simple and cost‐effective catalyst for the convenient one‐pot reductive acetylation of aromatic nitro compounds. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Saviz Zarrin
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
20
|
Facile, capable, atom-economical one-pot multicomponent strategy for the direct regioselective synthesis of novel isoxazolo[5,4-d]pyrimidines. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03757-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zeynizadeh B, Younesi R, Mousavi H. Ni2B@Cu2O and Ni2B@CuCl2: two new simple and efficient nanocatalysts for the green one-pot reductive acetylation of nitroarenes and direct N-acetylation of arylamines using solvent-free mechanochemical grinding. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3559-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|