1
|
Fujiuchi K, Aoki N, Ohtake T, Iwashita T, Kawasaki H. Transitions in Immunoassay Leading to Next-Generation Lateral Flow Assays and Future Prospects. Biomedicines 2024; 12:2268. [PMID: 39457581 PMCID: PMC11504701 DOI: 10.3390/biomedicines12102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In the field of clinical testing, the traditional focus has been on the development of large-scale analysis equipment designed to process high volumes of samples with fully automatic and high-sensitivity measurements. However, there has been a growing demand in recent years for the development of analytical reagents tailored to point-of-care testing (POCT), which does not necessitate a specific location or specialized operator. This trend is epitomized using the lateral flow assay (LFA), which became a cornerstone during the 2019 pandemic due to its simplicity, speed of delivering results-within about 10 min from minimal sample concentrations-and user-friendly design. LFAs, with their paper-based construction, combine cost-effectiveness with ease of disposal, addressing both budgetary and environmental concerns comprehensively. Despite their compact size, LFAs encapsulate a wealth of technological ingenuity, embodying years of research and development. Current research is dedicated to further evolving LFA technology, paving the way for the next generation of diagnostic devices. These advancements aim to redefine accessibility, empower individuals, and enhance responsiveness to public health challenges. The future of LFAs, now unfolding, promises even greater integration into routine health management and emergency responses, underscoring their critical role in the evolution of decentralized and patient-centric healthcare solutions. In this review, the historical development of LFA and several of the latest LFA technologies using catalytic amplification, surface-enhanced Raman scattering, heat detection, electron chemical detections, magnetoresistance, and detection of reflected electrons detection are introduced to inspire readers for future research and development.
Collapse
Affiliation(s)
- Koyu Fujiuchi
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Noriko Aoki
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Tetsurou Ohtake
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| | - Hideya Kawasaki
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| |
Collapse
|
2
|
Zhuang QQ, Chen RT, Zheng YJ, Huang KY, Peng HP, Lin Z, Xia XH, Chen W, Deng HH. Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC-based immunochromatography test strip. Biosens Bioelectron 2021; 177:112977. [PMID: 33434779 DOI: 10.1016/j.bios.2021.112977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Assays for detecting tetanus toxoid are of great significance to be applied in the research of the safety testing of tetanus vaccine. Currently, guinea pigs or mice are usually used to evaluate the toxicity in these assays. Herein, a facile and quick biomineralization process was carried out to generate tetanus human immunoglobulin G (Tet-IgG)-functionalized Au nanoclusters (Tet-IgG-AuNCs). The obtained Tet-IgG-AuNCs exhibited strong red emission with a photoluminescence quantum yield of 13%. Based on surface plasmon resonance measurements, the apparent dissociation constant of the Tet-IgG-AuNC-tetanus toxoid complexes was measured to be 2.27 × 10-8 M. A facile detection approach was developed using a fluorescent Tet-IgG-AuNC-based immunochromatography test strip. By utilizing the high-brightness fluorescent Tet-IgG-AuNCs, this immunosensor showed favorable sensitivity with a detection limit at the level of 0.03 μg/mL. Further results demonstrated that this assay can reliably detect tetanus toxoid and therefore might provide a novel method to replace animal tests for the quantification of tetanus toxicity. Moreover, the antibody-AuNC-based immunochromatography test strip platform serves as a promising candidate to develop new approaches for detecting targeted antigens and biological events of interest.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China; Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Rui-Ting Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Yi-Jing Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
3
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
4
|
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 2020; 145:2828-2840. [DOI: 10.1039/c9an02485a] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiplexed detection of biomarkers, i.e., simultaneous detection of multiple biomarkers in a single assay, can enhance diagnostic precision, improve diagnostic efficiency, reduce diagnostic cost, and alleviate pain of patients.
Collapse
Affiliation(s)
- Lei Huang
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Shulin Tian
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Wenhao Zhao
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Ke Liu
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining
- Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
- Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing
| | - Jinhong Guo
- School of Communication and Information Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| |
Collapse
|