1
|
Tarighati Sareshkeh A, Seyed Dorraji MS, Karami Z, Shahmoradi S, Fekri E, Daneshvar H, Rasoulifard MH, Karimov DN. Preparation of high-crystalline and non-metal modified g-C 3N 4 for improving ultrasound-accelerated white-LED-light-driven photocatalytic performances. Sci Rep 2023; 13:15079. [PMID: 37699970 PMCID: PMC10497575 DOI: 10.1038/s41598-023-41473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
As a non-metallic organic semiconductor, graphitic carbon nitride (g-C3N4) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-C3N4, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-C3N4. Here, we synthesized non-metal-doped highly crystalline g-C3N4 by one-pot calcination method, which enhanced the photocatalytic activity of g-C3N4 such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L-1 of O-doped g-C3N4 and S-doped g-C3N4, 20 mg L-1 MB, 0.25 ml s-1 O2, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical [Formula: see text]. More importantly, the sonophotocatalytic degradation ability of O-doped g-C3N4 and S-doped g-C3N4 was remarkably sustained even after the sixth consecutive run.
Collapse
Affiliation(s)
- Abdolreza Tarighati Sareshkeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Zhaleh Karami
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Saeedeh Shahmoradi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Elnaz Fekri
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hoda Daneshvar
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Denis N Karimov
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninsky Prospekt 59, 119333, Moscow, Russia.
| |
Collapse
|
2
|
Xiao Z, Wu X, Tan H, Hao S. Design synthesis of Fe-Ce-O@C with efficient photocatalytic activity. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|