1
|
Başaran E, Çakmak R, Sahin D, Köprü S, Türkmenoğlu B, Akkoc S. Design, spectroscopic characterization, in silico and in vitro cytotoxic activity assessment of newly synthesized thymol Schiff base derivatives. J Biomol Struct Dyn 2025; 43:4111-4124. [PMID: 38197804 DOI: 10.1080/07391102.2024.2301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a global public health problem affecting millions of people every year. New anticancer drug candidates are needed to overcome the resistance to drugs used in the treatment of various types of cancer. In this study, two new series of benzenesulfonate-based thymol derivatives (14-19 and 20-25) were synthesized for the first time as promising chemotherapeutic agents and characterized using FT-IR, 1D NMR (1H- and 13C-NMR, APT, DEPT 135), 2D NMR (HETCOR and HMBC), and elemental analysis (CHNS). Antiproliferative activity of the molecules was determined against cancer cell lines, namely, the human lung adenocarcinoma cell line (A549) and the colorectal adenocarcinoma cell line (DLD-1), using MTT method for both 48 and 72 h. Compounds (14-25) showed cytotoxic activities against A549 with IC50 values ranging from 9.98 to 81.83 μM, respectively, compared to cisplatin (6.65 μM). These compounds exhibited antiproliferative activities against DLD-1 cancer cells at concentrations ranging from 4.29 to 53.62 μM, respectively, compared to cisplatin (9.91 μM). Especially, compound 16 displayed significant cytotoxicity on A549 and DLD-1 cancer cells with IC50 values of 9.98 and 10.75 μM, respectively. Finally, molecular docking studies were performed with Bcl-2, VEGFR-2, EGFR, and HER2 targets using the Schrödinger 2021-2 Maestro Glide program. The binding energy values and binding interactions of compounds 16 and 22 were determined to be the result of their interactions with these targets. Schrödinger 2021-2 Qikprop wizard drug similarity ratios and ADME prediction of all compounds 14-25 were also calculated.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, Turkey
| | - Dicle Sahin
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Süleyman Demirel University, Isparta, Turkey
| | - Semiha Köprü
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
2
|
Eshal J, Tariq HZ, Li J, Aftab H, Şenol H, Taslimi P, Sadeghian N, Alharthy RD, Akram MS, Talib R, Shafiq Z. Synthesis, biological evaluation, and in silico studies of phenyl naphthalene-2-sulfonate derived thiosemicarbazones as potential carbonic anhydrase inhibitors. Bioorg Chem 2025; 155:108118. [PMID: 39793219 DOI: 10.1016/j.bioorg.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
A series of novel phenyl naphthalene-2-sulfonate-based thiosemicarbazones (5a-v) were synthesized and evaluated for their inhibitory activity against human carbonic anhydrases I and II (hCA I and hCA II). Compounds 5d and 5p demonstrated the highest inhibitory potency, with IC50 values of 4.32 ± 0.02 nM and 5.24 ± 0.03 nM for hCA I, and 3.89 ± 0.01 nM and 4.72 ± 0.01 nM for hCA II, respectively. Notably, compound 5d exhibited superior potency compared to the reference drug acetazolamide. The structure-activity relationship (SAR) analysis revealed that electron-withdrawing groups, particularly the dichlorophenyl group in 5d and 5p, enhanced inhibitory activity. Molecular docking and molecular dynamics simulations confirmed the high binding affinity of compound 5d, with docking scores of -9.7 kcal/mol for hCA I and -9.5 kcal/mol for hCA II. Stability in MD simulations further supported its potent inhibitory action. ADMET predictions suggested that compounds 5d and 5p have favorable pharmacokinetic profiles. In conclusion, phenyl naphthalene-2-sulfonate-based thiosemicarbazones, especially compound 5d, show strong potential as therapeutic agents targeting hCA I and hCA II.
Collapse
Affiliation(s)
- Javeria Eshal
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Hafiza Zara Tariq
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Jing Li
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Fatih, İstanbul, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74110 Bartin, Turkey.
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, 74110 Bartin, Turkey
| | - Rima D Alharthy
- Department of Chemistry, Science & Arts College, Rabigh Branch, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Science & Health, Teesside University, Middlesbrough TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK
| | - Rimsha Talib
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
3
|
Başaran E, Çakmak R, Türkmenoğlu B, Akkoc S, Köprü S. Synthesis of Sulfonamide-Based Schiff Bases as Potent Anticancer Agents: Spectral Analyses, Biological Activity, Molecular Docking, ADME, DFT, and Pharmacophore Modelling Studies. Chem Biodivers 2025; 22:e202402229. [PMID: 39439182 DOI: 10.1002/cbdv.202402229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The current study focuses on the synthesis and characterization of six benzenesulfonamide-based Schiff base derivatives (7-12) with various electron-withdrawing and electron-donating substituents (-F, -CI, -Br, -CH3, and -OCH3) and the assessment of their antiproliferative activities against human lung (A549) and liver (HepG2) cancer cell lines using in vitro and in silico approaches. The structures of the synthesized compounds (7-12) were elucidated by elemental analysis and FT-IR, 1D (1H, 13C, APT, and DEPT-135), and 2D (HMQC and HMBC) NMR spectroscopies. The cytotoxic activities of the targeted compounds were determined at various concentrations against these cancer cell lines for 72 h, using the MTT method. The targeted molecules (7-12) demonstrated remarkable antiproliferative activities, with IC50 values ranging from 6.032-9.533 μM against the A549 cell line and 5.244-9.629 μM against the HepG2 cell line. These compounds showed activities at lower or very similar concentrations to cisplatin against the A549 cell line and at much lower concentrations than cisplatin against the HepG2 cell line. Among them, compounds 10 and 12 were found to be more effective against A549 and HepG2 cells, respectively, than cisplatin. These compounds were analyzed by interacting with the 1BNA, 4HJO, and 4ASD crystal structures in molecular docking studies. The docking score of 4ASD-compound 12 interaction was calculated as -4.045 kcal/mol, 4HJO-compound 10 interaction was calculated as -5.179 kcal/mol and 1BNA-compound 10 interaction was calculated as -8.571 kcal/mol and it was determined that these compounds were theoretically better than Cisplatin. In the present study, ADME data were estimated using the web tool SwissADME. With ADME, it was calculated that the logP value of compounds 7-12 was less than 5, the HBD number was 1, the HBA number was 7 or 8, and the molecular weight was less than 500. Properties such as the electrophilic index and chemical hardness of the designed compounds were examined by density functional theory (DFT) using B3LYP/6-311G**. In conclusion, these compounds have emerged as promising new anti-cancer drug candidates.
Collapse
Affiliation(s)
- Eyüp Başaran
- Batman University, Vocational School of Technical Sciences, Department of Chemistry and Chemical Processing Technologies, Batman, 72060, Türkiye
| | - Reşit Çakmak
- Batman University, Vocational School of Health Services, Medical Laboratory Techniques Program, Batman, 72060, Türkiye
| | - Burçin Türkmenoğlu
- Erzincan Binali Yıldırım University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzincan, 24002, Türkiye
| | - Senem Akkoc
- Suleyman Demirel University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Isparta, 32260, Türkiye
- Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, 34353, Türkiye
| | - Semiha Köprü
- Erciyes University, Department of Chemistry, Faculty of Sciences, Kayseri, 38039, Türkiye
- Erciyes University, Technology Research and Application Center, Kayseri, 38039, Türkiye
| |
Collapse
|
4
|
Akış B, Çakmak R, Şentürk M. New Sulfonate Ester-Linked Fluorinated Hydrazone Derivatives as Multitarget Carbonic Anhydrase and Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, Molecular Docking and ADME Analysis. Chem Biodivers 2024; 21:e202401849. [PMID: 39159154 PMCID: PMC11644115 DOI: 10.1002/cbdv.202401849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
In this study, some new hydrazone derivatives (2a-g) was designed, synthesized for first time, and evaluated as multitarget inhibitors of AChE, BChE, hCA I and hCA II. The chemical structures of new hybrids were confirmed by elemental analysis and some spectroscopic techniques. All tested compounds showed low nanomolar inhibition with IC50 values of in the range of 30.4-264.0 nM against hCA I, 23.2-251.6 nM against hCA II, 12.1-114.3 nM against AChE, and 76.4-134.0 nM against BChE. These compounds inhibited hCA I and AChE more than acetazolamide (AZA) and neostigmine. Among them, compounds 2c and 2e, which have a linear structure, were determined to be the most active inhibitor candidates against these selected enzymes. Molecular docking studies were carried out on the compounds (2a--g), revealing their binding interactions with the active site of AChE, BChE, hCA I and hCA II thus supporting the experimental findings. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) prediction studies of the obtained compounds (2a--g) with in silico approaches were carried out to determine their solubility, whether they have the potential to cross the blood-brain barrier (BBB), values such as GI absorption and drug likeness principles.
Collapse
Affiliation(s)
- Berna Akış
- Department of ChemistryGraduate Education InstituteBatman University72100BatmanTürkiye
| | - Reşit Çakmak
- Medical Laboratory Techniques ProgramVocational School of Health ServicesBatman University72060BatmanTürkiye
| | - Murat Şentürk
- Department of BiochemistryFaculty of PharmacyAğrı Ibrahim Çecen University04100AğrıTürkiye
| |
Collapse
|
5
|
Paşa S, Atlan M, Temel H, Türkmenoğlu B, Ertaş A, Okan A, Yilmaz S, Ateş Ş. Histopathological, Antioxidant, and Enzyme Activity of Boronic Incorporated Catechin Compound: Screening of Bioactivity with Molecular Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2024; 50:1446-1465. [DOI: 10.1134/s1068162024040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2025]
|
6
|
Başaran E, Tür G, Akkoc S, Taskin-Tok T. Design, Synthesis, and In Silico and In Vitro Cytotoxic Activities of Novel Isoniazid-Hydrazone Analogues Linked to Fluorinated Sulfonate Esters. ACS OMEGA 2024; 9:17551-17562. [PMID: 38645328 PMCID: PMC11025081 DOI: 10.1021/acsomega.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Cancer is a life-threatening disease, and significant efforts are still being made to treat it. In this study, we synthesized and characterized novel hybrid molecules (10-18) containing hydrazone and sulfonate moieties and tested their cell growth inhibitory effect on human colon cancer cells (DLD-1), human prostate cancer cells (PC3), and human embryonic kidney cells (HEK-293T) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method for 72 h. In cell culture studies, all tested hybrid molecules except for 12 and 13 showed significant cytotoxic activities at a micromolar level with IC50 values in the range of 10.28-214.0 μM for the PC3 cell line and 13.49-144.30 μM for the DLD-1 cell line. Compounds 4 (10.28 μM) and 5 (11.22 μM) demonstrated the highest cytotoxicity against the PC3 cell line. Against the DLD-1 cell line, compounds 1 (22.53 μM), 4 (13.49 μM), 5 (19.33 μM), 6 (17.82 μM), 8 (24.71 μM), 9 (17.56 μM), and 10 (17.90 μM) in the series showed anticancer activity at lower micromolar levels compared to cisplatin (26.70 μM). Moreover, the study was handled computationally, and molecular docking studies were performed for compounds 1, 4, and 5 for PC3-FAK and PC3-Scr and compounds 4, 6, and 9 for the DLD-1-TNKS target. In this study, compound 4 was found to be the most effective and promising molecule for both targets.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department
of Chemistry and Chemical Processing Technologies, Vocational School
of Technical Sciences, Batman University, Batman 72060, Turkey
| | - Gulal Tür
- Department
of Chemistry, Graduate Education Institute, Batman University, Batman 72100, Turkey
| | - Senem Akkoc
- Faculty
of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta 32260, Turkey
- Faculty
of Engineering and Natural Sciences, Bahçeşehir
University, Istanbul 34353, Turkey
| | - Tugba Taskin-Tok
- Department
of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey
- Department
of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| |
Collapse
|
7
|
Khan M, Gohar H, Alam A, Wadood A, Shareef A, Ali M, Khalid A, Abdalla AN, Ullah F. Para-Substituted Thiosemicarbazones as Cholinesterase Inhibitors: Synthesis, In Vitro Biological Evaluation, and In Silico Study. ACS OMEGA 2023; 8:5116-5123. [PMID: 36777613 PMCID: PMC9910069 DOI: 10.1021/acsomega.2c08108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The current research reports the synthesis of 14 para-substituted thiosemicarbazone derivatives in good to excellent yields using standard procedures. Initially, 4-ethoxybenzaldehyde (1) and 4-nitrobenzaldehyde (2) were refluxed with thiosemicarbazide in the presence of acetic acid in ethanol for 4-5 h. Then, various substituted phenacyl bromides were treated with the desired thiosemicarbazones (3 and 4) in the presence of triethylamine in ethanol with constant stirring for 5-6 h. The resulting derivatives were confirmed through electron impact mass spectrometry and 1H NMR spectroscopy and evaluated for anticholinesterase inhibitory activity. Among the series, four compounds, 19, 17, 7, and 6, showed potent inhibitory activity against the acetylcholinesterase (AChE) enzyme, having IC50 values of 110.19 ± 2.32, 114.57 ± 0.15, 140.52 ± 0.11, and 160.04 ± 0.02 μM, respectively, compared with standard galantamine (IC50 = 104.5 ± 1.20 μM). Similarly, compounds 19 (IC50 = 145.11 ± 1.03 μM), 9 (IC50 = 147.20 ± 0.09 μM), 17 (IC50 = 150.36 ± 0.18 μM), and 6 (IC50 = 190.21 ± 0.13 μM) were the most excellent inhibitors of butyrylcholinesterase (BChE) when compared with the standard drug galantamine (IC50 = 156.8 ± 1.50 μM). In silico studies were accomplished on the produced derivatives in order to explain the binding interface of compounds with the active sites of AChE and BChE enzymes.
Collapse
Affiliation(s)
- Momin Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Hina Gohar
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Aftab Alam
- Department
of Chemistry, University of Malakand, Lower Dir, Chakdara18800, Pakistan
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Azam Shareef
- Department
of Biochemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Mahboob Ali
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Asaad Khalid
- Substance
Abuse and Toxicology Research Center, Jazan
University, P.O. Box: 114, Jazan45142, Saudi Arabia
- National
Center for Research, Medicinal and Aromatic
Plants and Traditional Medicine Research Institute, P.O. Box 2404, Khartoum11111, Sudan
| | - Ashraf N. Abdalla
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah21955, Saudi Arabia
| | - Farhat Ullah
- Department
of Pharmacy, University of Malakand, Dir Lower, Chakdara, Khyber
Pakhtunkhwa18800, Pakistan
| |
Collapse
|
8
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. In vitro enzymatic evaluation of some pyrazolo[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev Res 2023; 84:3-24. [PMID: 36380556 DOI: 10.1002/ddr.22008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Basaran E, Gamze Sogukomerogullari H, Cakmak R, Akkoc S, Taskin-Tok T, Köse A. Novel chiral Schiff base Palladium(II), Nickel(II), Copper(II) and Iron(II) complexes: Synthesis, characterization, anticancer activity and molecular docking studies. Bioorg Chem 2022; 129:106176. [PMID: 36209564 DOI: 10.1016/j.bioorg.2022.106176] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
In this study, two chiral Schiff base ligands (L1 and L2) were synthesized from the condensation reaction of (S)-2-amino-3-phenyl-1-propanol with 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde as metal precursors for the preparation of transition metal complexes with Pd(II), Fe(II), Ni(II) and Cu(II). The compounds were characterized by using X-ray (for L1-Pd(II)), NMR, FT-IR, UV-Vis, magnetic susceptibility, molar conductivity, and elemental analysis. The in vitro cytotoxic effects of ligands (L1 and L2) and their metal complexes on colon cancer cells (DLD-1), breast cancer cells (MDA-MB-231) and healthy lung human cell lines were investigated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5‑diphenyl tetrazolium bromide (MTT) assay. Among the synthesized compounds, L1-Pd(II) was particularly found to be the most potent anticancer drug candidate in this series with IC50 values of 4.07, and 9.97 µM in DLD-1 and MDA-MB-231 cell lines, respectively. In addition, molecular docking results indicate that Glu122, Asn103, Ala104, Lys126, Phe114, Leu123, and Lys126 amino acids are the binding site of the colon cancer antigen protein, in which the most active complex, L1-Pd(II) can inhibit the current target.
Collapse
Affiliation(s)
- Eyüp Basaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, Batman, Turkey.
| | - Hatice Gamze Sogukomerogullari
- Medical Services and Techniques Department, Vocational School of Health Services, Gaziantep University, Gaziantep, Turkey.
| | - Resit Cakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey; Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey; Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaras, Turkey
| |
Collapse
|
10
|
Esmer Yİ, Çınar E, Başaran E. Design, Docking, Synthesis and Biological Evaluation of Novel Nicotinohydrazone Derivatives as Potential Butyrylcholinesterase Enzyme Inhibitor. ChemistrySelect 2022. [DOI: 10.1002/slct.202202771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf İslam Esmer
- Department of Chemistry Graduate Education Institute Batman University 72060 Batman Turkey
| | - Ercan Çınar
- Department of Nursing, Faculty of Health Sciences Batman University 72060 Batman Turkey
| | - Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Batman University 72060 Batman Turkey
| |
Collapse
|