1
|
Kosecka-Strojek M, Wolska-Gębarzewska M, Podbielska-Kubera A, Samet A, Krawczyk B, Międzobrodzki J, Michalik M. May Staphylococcus lugdunensis Be an Etiological Factor of Chronic Maxillary Sinuses Infection? Int J Mol Sci 2022; 23:ijms23126450. [PMID: 35742895 PMCID: PMC9224237 DOI: 10.3390/ijms23126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus lugdunensis is an opportunistic pathogen found in the healthy human skin microbiome bacterial community that is able to cause infections of diverse localization, manifestation, and course, including laryngological infections, such as necrotizing sinusitis. Chronic maxillary sinusitis is a disease present in up to one third of European and American populations, and its etiology is not fully described. Within this study, we aimed to characterize 18 S. lugdunensis strains recovered from maxillary sinuses and evaluate them as etiological agents of chronic disease. We performed MLST analysis, the complex analysis of both phenotypic and genetic virulence factors, antibiotic susceptibility profiles, and biofilm formation assay for the detection of biofilm-associated genes. Altogether, S. lugdunensis strains were clustered into eight different STs, and we demonstrated several virulence factors associated with the chronic disease. All tested strains were able to produce biofilm in vitro with numerous strains with a very strong ability, and overall, they were mostly susceptible to antibiotics, although we found resistance to fosfomycin, erythromycin, and clindamycin in several strains. We believe that further in-depth analysis of S. lugdunensis strains from different niches, including the nasal one, should be performed in the future in order to reduce infection rate and broaden the knowledge about this opportunistic pathogen that is gaining attention.
Collapse
Affiliation(s)
- Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
- Correspondence:
| | - Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | | | - Alfred Samet
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (M.W.-G.); (J.M.)
| | - Michał Michalik
- MML Centre, Bagno 2, 00-112 Warsaw, Poland; (A.P.-K.); (A.S.); (M.M.)
| |
Collapse
|
2
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
3
|
Yen TY, Sung YJ, Lin HC, Peng CT, Tien N, Hwang KP, Lu JJ. Emergence of oxacillin-resistant Staphylococcus lugdunensis carrying staphylococcal cassette chromosome mec type V in central Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:885-891. [DOI: 10.1016/j.jmii.2014.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/12/2014] [Accepted: 11/29/2014] [Indexed: 11/26/2022]
|
4
|
Giormezis N, Kolonitsiou F, Makri A, Vogiatzi A, Christofidou M, Anastassiou ED, Spiliopoulou I. Virulence factors among Staphylococcus lugdunensis are associated with infection sites and clonal spread. Eur J Clin Microbiol Infect Dis 2014; 34:773-8. [PMID: 25471196 DOI: 10.1007/s10096-014-2291-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]
Abstract
Staphylococcus lugdunensis has emerged as a significant human pathogen, with distinct clinical and microbiological characteristics. Our goal was to identify the virulence factors in S. lugdunensis recovered from infected patients of two Greek hospitals during a six-year period (2008-2013). A collection of 38 S. lugdunensis was tested for biofilm formation, antimicrobial susceptibility, clonal distribution, virulence factors (ica operon, fbl, atlL, vwbl, slush) and antibiotic resistance genes (mecA, ermC) carriage. Strains were classified into pulsotypes by pulsed-field gel electrophoresis (PFGE) of SmaI DNA digests. The majority (22) was isolated from skin and soft tissue infections (SSTIs), nine from deep-sited infections (DSIs), including three bacteraemias and seven from prosthetic device-associated infections (PDAIs). All isolates were oxacillin-susceptible, mecA-negative and fbl-positive. The highest resistance rate was detected for ampicillin (50%), followed by erythromycin and clindamycin (18.4%). Fourteen isolates (36.8%) produced biofilm, whereas 26/38 (68.4%) carried the ica operon. Biofilm formation was more frequent in isolates from PDAIs. Thirty-six strains (94.7%) carried atlL and 31 (81.6%) carried vwbl, whereas slush was detected in 15 (39.5%). PFGE revealed a low level of genetic diversity: strains were classified into seven pulsotypes, with two major clones (C: 22 and D: nine strains). Type C strains recovered from all infection sites prevailed in biofilm formation and ermC carriage, whereas type D strains associated with SSTIs and DSIs carried more frequently vwbl, slush or both genes. Despite susceptibility to antimicrobials, the clonal expansion and carriage of virulence factors, combined with biofilm-producing ability, render this species an important pathogen that should not be ignored.
Collapse
Affiliation(s)
- N Giormezis
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion, Patras, Greece
| | | | | | | | | | | | | |
Collapse
|
5
|
Staphylococcus Lugdunensis, An Aggressive Coagulase-Negative Pathogen not to be Underestimated. Int J Artif Organs 2012; 35:742-53. [DOI: 10.5301/ijao.5000142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2012] [Indexed: 01/06/2023]
Abstract
The new emerging coagulase-negative pathogen Staphylococcus lugdunensis is responsible for severe cardiac and joint infections. Since the biochemical phenotypic systems designed for the identification of CoNS do not appear to be species specific and are hardly reliable for the discrimination of S. lugdunensis from other staphylococci, its precise identification requires fine molecular methods. The pathogenic mechanisms by which S. lugdunensis causes severe infections are not yet completely elucidated and in this review its virulence and toxic determinants are surveyed as well as its adhesins and biofilm production.
Collapse
|
6
|
Liu C, Shen D, Guo J, Wang K, Wang H, Yan Z, Chen R, Ye L. Clinical and microbiological characterization of Staphylococcus lugdunensis isolates obtained from clinical specimens in a hospital in China. BMC Microbiol 2012; 12:168. [PMID: 22866997 PMCID: PMC3480830 DOI: 10.1186/1471-2180-12-168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/17/2012] [Indexed: 11/17/2022] Open
Abstract
Background Several reports have associated Staphylococcus lugdunensis with the incidence of severe infection in humans; however, the frequency and prevalence of this microorganism and thus the propensity of its antimicrobial drug resistance is unknown in China. The objective of the current study was to determine the prevalence of Staphylococcus lugdunensis among six hundred and seventy non-replicate coagulase negative Staphylococcus (CoNS) isolates collected in a 12-month period from clinical specimens in the General Hospital of the People’s Liberation Army in Beijing, China. Results Five (0.7%) of the 670 isolates of CoNS were identified as S. lugdunensis. Whereas three isolates were resistant to erythromycin, clindamycin, and penicillin and carried the ermC gene and a fourth one was resistant to cefoxitin and penicillin and carried the mecA gene, one isolate was not resistant to any of the tested antimicrobials. Pulse field gel electrophoretic analysis did not reveal widespread epidemiological diversity of the different isolates. Conclusion Hence, even though S. lugdunensis may be yet unrecognized and undefined in China, it still might be the infrequent cause of infection and profound multi-drug resistance in the same population.
Collapse
Affiliation(s)
- Chaojun Liu
- Department of Clinical Microbiology, General Hospital of The People's Liberation Army, Hai Dian District, Beijing 100853, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Multilocus sequence typing analysis of Staphylococcus lugdunensis implies a clonal population structure. J Clin Microbiol 2012; 50:3003-9. [PMID: 22785196 DOI: 10.1128/jcm.00988-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus.
Collapse
|
8
|
Late Periprosthetic Joint Infection due to Staphylococcus lugdunensis Identified by Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry: A Case Report and Review of the Literature. Case Rep Med 2011; 2011:608919. [PMID: 21776276 PMCID: PMC3138060 DOI: 10.1155/2011/608919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus lugdunensis, member to the group of coagulase-negative staphylococci, is previously thought to be rarely isolated. Recently other staphylococci have been described, which were supposedly related to S. lugdunensis, such as Staphylococcus pseudolugdunensis and Staphylococcus pettenkoferi. To decrease the rate misidentifications, an accurate identification method, such as matrix-assisted laser desorption ionization time of flight mass spectrometry or molecular methods, should be used. S. lugdunensis is usually associated with severe infections similar to those caused by S. aureus. Moreover, it has been described that skin infections due to S. lugdunensis are severely underreported and could be also underreported in periprosthetic joint infections. Ours is the first case of a late periprosthetic infection of the hip due to S. lugdunensis, identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. A periprosthetic infection due to S. lugdunensis should be treated according to protocols of S. aureus periprosthetic infections, and therefore an accurate species identification is desirable.
Collapse
|
9
|
Szabados F, Nowotny Y, Marlinghaus L, Korte M, Neumann S, Kaase M, Gatermann SG. Occurrence of genes of putative fibrinogen binding proteins and hemolysins, as well as of their phenotypic correlates in isolates of S. lugdunensis of different origins. BMC Res Notes 2011; 4:113. [PMID: 21477287 PMCID: PMC3089787 DOI: 10.1186/1756-0500-4-113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/08/2011] [Indexed: 11/29/2022] Open
Abstract
Background Staphylococcus lugdunensis is an important human pathogen that causes potentially fatal endocarditis, osteomyelitis and skin and soft tissue infections similar to diseases caused by Staphylococcus aureus. Nevertheless, in contrast to S. aureus, data on pathogenicity factors of S. lugdunensis is scarce. Two adhesins, a fibrinogen and a von Willebrand factor binding protein, and a S. lugdunensis synergistic hemolysin (SLUSH) have been previously described. Moreover, the newly sequenced genome of S. lugdunensis revealed genes of other putative fibrinogen binding adhesins and hemolysins. The aim of this study was to gain more insight into the occurrence of genes likely coding for fibrinogen binding adhesins and hemolysins using clinical strains of S. lugdunensis. Findings Most of the putative adhesin genes and hemolysin genes investigated in this study were highly prevalent, except for the SLUSH gene cluster. In contrast to previous reports, binding to fibrinogen was detected in 29.3% of the S. lugdunensis strains. In most strains, hemolysis on blood agar plates was weak after 24 h and distinct after 48 h of incubation. The fibrinogen binding and hemolysis phenotypes were also independent of the type of clinical specimen, from which the isolates were obtained. Conclusion In this study we described a pyrrolidonyl arylamidase negative S. lugdunensis isolate. Our data indicate that a matrix-assisted laser desorption ionisation time-of-flight MS-based identification of S. lugdunensis or species-specific PCR's should be performed in favour of pyrrolidonyl arylamidase testing. In contrast to the high occurrence of putative fibrinogen binding protein genes, 29.3% of the S. lugdunensis strains bound to fibrinogen. Putative hemolysin genes were also prevalent in most of the S. lugdunensis strains, irrespective of their hemolysis activity on Columbia blood agar plates. Similar to a previous report, hemolysis after 48 h of incubation is also indicative for S. lugdunensis. The SLUSH gene cluster was detected in an estimated 50% of the strains, indicating that this locus is different or non-prevalent in many strains.
Collapse
Affiliation(s)
- Florian Szabados
- Institute for Hygiene and Microbiology, Dept, for Medical Microbiology, University Bochum Universitätsstraße 150, Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|